• Title/Summary/Keyword: separation factor

Search Result 656, Processing Time 0.026 seconds

Separation of $H_2$/$N_2$ Gas Mixture by SiO$_2$-B$_2$O$_3$ Membrane (SiO$_2$-B$_2$O$_3$ 막에 의한 수소/질소 혼합기체 분리)

  • Kang Tae-Bum;Park Jin-Ho
    • Membrane Journal
    • /
    • v.14 no.4
    • /
    • pp.312-319
    • /
    • 2004
  • The porous SiO$_2$-B$_2$O$_3$ membrane was prepared from Si(OC$_2$$H_5$)$_4$-($CH_3$O)$_3$B-C$_2$$H_5$OH-$H_2O$ system by sol-gel method. In order to investigate the characteristics of this membrane, we examined that using BET, IR spectrophotometer, X-ray diffractometer, SEM and TEM. At $700^{\circ}C$, the surface area of SiO$_2$-B$_2$O$_3$ membrane was 354.398 $m^2$/, the median pore diameter was 0.0048 ${\mu}{\textrm}{m}$, and the particle size of SiO$_2$-B$_2$O$_3$ membrane was 7 nm. The separation properties of the gas mixture ($H_2$/$N_2$) through the SiO$_2$-B$_2$O$_3$ membrane was studied as a function of pressure. The real separation factor($\alpha$) of SiO$_2$-B$_2$O$_3$ membrane for $H_2$/$N_2$ gas mixture was 4.68 at 155.15 cmHg and $25^{\circ}C$. The real separation factor($\alpha$), head separation factor($\beta$) and tail separation factor((equation omitted)) were increased as the pressure of permeation cell increased.

Preparation of Microporous Silica Membrane from TEOS-$H_2O$ System and Separation Of $H_2$-$N_2$ Gas Mixture (TEOS-$H_2O$계로부터 다공성 실리카 막의 제조 및 수소-질소 혼합기체의 분리)

  • 강태범;이현경;이용택
    • Membrane Journal
    • /
    • v.10 no.2
    • /
    • pp.55-65
    • /
    • 2000
  • The porous silica membrane was prepared from Si(${OC}_2H_5)_4-H_2O$ system by sol-gel method. To investigate the characteristics of gels and porous silica membrane, we examined gels and porous silica membrane using TG-DTA, X-ray diffractometer, IR spectrophotometer, BET, SEM and TEM. The optimum mole ratio of Si(OC$_2$H$_{5}$)$_4$ : $H_2O$ $C_2$H$_{5}$OH for porous silica membrane was 1 : 4.5 : 4. The porous silica membrane was obtained by heat treatment of the gel above 700 $^{\circ}C$. The specific surface area of sintered gel was 3.8 $m^2$/g to 902.3 $m^2$/g at 100 $^{\circ}C$ to 1100 $^{\circ}C$ The pore size of sintered gel was in the range 20 $\AA$~ 50$\AA$. The particle size of sintered gel was 15 nm to 30 nm at 30$0^{\circ}C$ to 700$^{\circ}C$. The performance of the porous silica membrane was investigated for the separation of $H_2$/$N_2$ gas mixture. Gas separation through porous silica membrane depends upon Knudsen flow and surface flow. The veal separation factor($\alpha$) of $H_2$/$N_2$ was 5.17 at 155.15 cmHg and $25^{\circ}C$. The real separation factor($\alpha$), head separation factor($\beta$), and tail separation factor( $\bar{B}$) increased as the pressure of permeation cell Increased.sed.

  • PDF

Synthesis and Characterization of Zeolite Composite Membranes (II): Synthesis and $CO_2$ Separation Efficiency of ZSM-5 Zeolite Composite Membranes (제올라이트 복합 분리막의 합성 및 특성화(II): ZSM-5 제올라이트 복합막의 합성 및 $CO_2$ 분리 효율)

  • 현상훈;송재권;김준학
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.747-757
    • /
    • 1997
  • ZSM-5 zeolite composite membranes have been synthesized from a silica sol solution containing TPABr as an organic template by the dip-coating and the pressurized-coating hydrothermal treatment techniques. The CO2 separation efficiency of synthesized composite membranes was also investigated. The permeation mechanism of CO2 through ZSM-5 membranses was the surface diffusion, and that of N2, O2, and He gases was Knudsen diffusion or activated diffusion depending on the synthetic method of membranes and the measurement temperature. The CO2/N2 separation factor of the membrane prepared by the dip-coating hydrothermal treatment was 2.5 at about 12$0^{\circ}C$, while the ZSM-5 composite membrane synthesized by the pressurized-coating hydrothermal treatment technique showed the CO2/N2 separation factor of 9.0 at room temperature higher than that ever reported in the literature.

  • PDF

Chromatographic Enrichment of Lithium Isotopes by Hydrous Manganese(IV) Oxide

  • Kim, Dong Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.503-506
    • /
    • 2001
  • Separation of lithium isotopes was investigated by chemical ion exchange with a hydrous manganese(IV) oxide ion exchanger using an elution chromatography. The capacity of manganese(IV) oxide ion exchanger was 0.5 meq/g. One molar CH3COO Na solution was used as an eluent. The heavier isotope of lithium was enriched in the solution phase, while the lighter isotope was enriched in the ion exchanger phase. The separation factor was calculated according to the method of Glueckauf from the elution curve and isotopic assays. The single stage separation factor of lithium isotope pair fractionation was 1.021.

Separation of $H_2$/$N_2$ Gas Mixture by PTMSP/PDMS-PEI Composite Membrane (PTMSP/PDMS-PEI 복합막에 의한 수소/질소 혼합기체 분리)

  • Kang Tae-Bum;Hong Se-Lyung
    • Membrane Journal
    • /
    • v.14 no.4
    • /
    • pp.298-303
    • /
    • 2004
  • PTMSP/PDMS-PEI composite membrane was prepared by solution casting method. To investigate the characteristics of this membrane, the analytical methods such as FT-IR, $^1$H-NMR, DSC, TGA, GPC, and SEM have been utilized. The number-average((equation omitted)) and weight-average((equation omitted)) molecular weight of PTMSP/PDMS copolymer were 501,516 and 675,560 respectively. The separation of the gas mixture($H_2$/$N_2$) through the composite membrane was studied as a function of pressure. The separation factor($\alpha$, $\beta$, (equation omitted)) of the composite membrane used in this work increased as the pressure of permeation cell increased. The real separation factor($\alpha$), head separation factor($\beta$), and tail separation factor ((equation omitted)) of PTMSP/PDMS-PEI composite membrane were 21.50, 49.14 and 1.84 respectively at $\Delta$P 345.55 kPa and $25^{\circ}C$.

Separation of $H_2$/$N_2$ Gas Mixture by PTMSP-PEI and PDMS-PEI Composite Membranes (PTMSP-PEI와 PDMS-PEI 복합막에 의한 수소/질소 혼합기체 분리)

  • 강태범;조성혜;이현경
    • Membrane Journal
    • /
    • v.13 no.4
    • /
    • pp.291-299
    • /
    • 2003
  • Polymer membranes such as poly(1-trimethylsilyl-1-propyne)-polyetherimide (PTMSP-PEI) and poly(dimethylsiloxane)- polyetherimide (PDMS-PEI) composite membrane were prepared by solution casting method. To investigate the characteristics of these membranes, the analytical methods such as FT-IR, $^1H-NMR,$ DSC, TGA, GPC, and SEM have been utilized. The number-average (equation omitted) and weight-average (equation omitted) molecular weight of PTMSP were 477,920 and 673,329 respectively. The glass transition temperature ($T_g$) of PTMSP was $224^{\circ}C.$ The separation of the gas mixture ($H_2/N_2$) through the composite membranes were studied as a function of pressure. The separation factor (${\alpha}, {\beta},$ quation omitted) of the composite membranes used in this work increased as the pressure of permeation cell increased. The real separation factor (${\alpha}$), head separation factor (${\beta}$), and tail separation factor (equation omitted) of PTMSP-PEI composite membrane were 2.28, 1.17, and 1.96 respectively at ${\Delta}P$ 30psi and $25^{\circ}C.$ (${\alpha}, {\beta}$ and equation omitted of PDMS-PEI composite membrane were 3.70, 1.53, and 2.42 respectively at ${\Delta}P$ 30psi and $25^{\circ}C$.

Chiral Separation of Tryptophan Enantiomers by Liquid Chromatography with BSA-Silica Stationary Phase

  • Kim Kwonil;Lee Kisay
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.17-22
    • /
    • 2000
  • The separation of tryptophan enantiomers was carried out with medium-pressure liquid chromatography using BSA (bovine serum albumin)-bonded silica as a chiral stationary phase. The influence of various experimental factors such as pH and ionic strength of mobile phase, separation temperature, and the presence of organic additives on the resolution was studied. In order to expand this system to preparative scale, the loadability of sample and the stability of stationary phase for repeated use were also examined. The separation of tryptophan enantiomers was successful with this system. The data indicated that a higher separation factor (a) was obtained at a higher pH and lower temperature and ionic strength in mobile phase. Addition of organic additives (acetonitrile and 2-propanol) in mobile phase contributed to reduce the retention time of L-tryptophan. About $30\%$ of the separation factor was reduced after 80 days of repeated use.

  • PDF

Chiral Separation of Ibuprofen by Supercritical Fluid Chromatography (초임계유체 크로마토그래피를 이용한 Ibuprofen의 키랄분리)

  • 한순구;노경호
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.263-268
    • /
    • 2004
  • The separation method using chiral stationary phase in preparation of chiral compound was wildly used, but in this work, supercritical fluid chromatography was suggested in the stability to resolve the chiral mixtures. To determine the optimum operating condition of the racemic ibuprofen, the retention factor and resolution with change in pressures, temperatures and the contents of IPA % (vol.) in CO$_2$ were investigated. The retention factor was decreased with increase in pressure and decrease in temperature. The factor was also influenced by the content of IPA in mobile phase, while the resolution was worse with a increase in IPA %. From the experimental results, the desirable separation condition was 130 bar, 311.15 K and 4% IPA in CO$_2$. Compared to the asymmetric peak shape by liquid chromatography, that of supercritical fluid chromatography was symmetric which was a favorable condition for preparative separation.

Separation of Toluene/n-Heptane Mixture by O/W/O Type Emulsion Liquid Membrane(part 1) (O/W/O형 Emulsion 액체막에 의한 Toluene과 n-Heptane 혼합물의 분리(제1보))

  • Ju, Myung-Jong;Kim, Tae-Young;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.95-103
    • /
    • 1996
  • In the separation of toluene/n-heptane mixture by the emulsion type liquid membrane in an batch system, the effect of surfactant on the separation factor and membrane stability was studied over the surfactant concentration ranging form 0.1 to 1.5wt% at the contact time of 5 and 10 minutes. and the settling time of 5 and 10 minutes. The surfactant used was sodium lauryl sulfate. The separation factor reached its maximum value at the surfactant concentration of 0.5wt% for surfantant. It was found that the percentage of membrane breakup reached its minimum values and the separation factor showed its maximum value at the surfactant concentration of 0.5wt%. which confirmed that efficient separation could be effect when emulsion liquid membrane was stable because of low membrane breakup.

Effect of Surfactant on the Separation of Toluene/n-Heptane Mixture by O/W/O Type Emulsion Liquid Membrane (O/W/O형 에멀젼 액체막에 의한 Toluene과 n-Heptane 혼합물의 분리에 있어서 계면활성제의 영향)

  • Kim, Tae-Young;Lee, Ju-Sang;Choi, Sung-Ok;Nam, Ki-Dae;Park, Sang-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.95-103
    • /
    • 1999
  • In the separation of toluene/n-heptane mixture by the emulsion type liquid membrane in a batch system, the effect of surfactants on the separation factor and membrane stability were studied over the surfactant concentration ranging from 0.1 to 1.5 wt% at the contact time of 5 and 10 minutes and the settling time 5 and 10 minutes. The surfactants used were triethanol amine lauryl sulfate. The separation factor reached its maximum value at the surfactant concentration of 0.5 wt%. It was found that the percentage of membrane breakup reached its minium values and the separation factor showed its maximum value at the surfactant concentration of 0.5 wt%, which confirmed that efficient separation could be effect when emulsion liquid membrane were stable because of low membrane break up.