• Title/Summary/Keyword: separation and purification

Search Result 353, Processing Time 0.028 seconds

Production of DFAIII by Fermentation and Enzyme Reaction and its Recovery (발효 및 효소반응을 통한 DFAIII의 생산 및 회수)

  • Lee, Jae-Chan;Lee, Gi-Yeong;Song, Gi-Bang;Lee, Yong-Bok
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.539-542
    • /
    • 1999
  • For the mass production of DFAIII and for the development of techniques of separation and purification of it, the methods of production of DFAIII and its recovery was investigated by fermentation with the strain of Arthrobacter ureafaciens KCTC 3387 and by enzyme reaction. In the first method, DFAIII was produced by fermentation with the strain of Arthrobacter ureafaciens KCTC 3387 and recovered from culture supernatant with silica gel gy filtration, in the second method, it was produced by enzyme reaction and recoverd with the same method of the first, and in third method it was produced by fermentation and recovered by addition of ethanol to the culture supernatnat.Against 25g/L of initial concentration of inulin, 1.57, 4.40, 0.34 g/L of powder of DFAIII was recovered respectively and the rate of recovery was 6.3, 17.6 1.4% and the purity was estimated at 81, 97, 87% respectively. For the production of DFAIII and its recovery, enzyme reaction method was the highest in the rate of recovery and its purity. By fermentation method, DFAIII was produced with 50% fo initial concentration of substrate but th rate of recovery was lower than enzyme reaction method and purity was lowest among the three methods. Ethanol pricipitation method showed the lowest rate of recovery.

  • PDF

Present and prospect of plant metabolomics (식물대사체 연구의 현황과 전망)

  • Kim, Suk-Weon;Kwon, Yong-Kook;Kim, Jong-Hyun;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.12-24
    • /
    • 2010
  • Plant metabolomics is a research field for identifying all of the metabolites found in a certain plant cell, tissue, organ, or whole plant in a given time and conditions and for studying changes in metabolic profiling as time goes or conditions change. Metabolomics is one of the most recently developed omics for holistic approach to biology and is a kind of systems biology. Metabolomics or metabolite fingerprinting techniques usually involves collecting spectra of crude solvent extracts without purification and separation of pure compounds or not in standardized conditions. Therefore, that requires a high degree of reproducibility, which can be achieved by using a standardized method for sample preparation and data acquisition and analysis. In plant biology, metabolomics is applied for various research fields including rapid discrimination between plant species, cultivar and GM plants, metabolic evaluation of commercial food stocks and medicinal herbs, understanding various physiological, stress responses, and determination of gene functions. Recently, plant metabolomics is applied for characterization of gene function often in combination with transcriptomics by analyzing tagged mutants of the model plants of Arabidopsis and rice. The use of plant metabolomics combined by transcriptomics in functional genomics will be the challenge for the coming year. This review paper attempted to introduce current status and prospects of plant metabolomics research.

Study of Pro-environmental Development for Golf Course in Korea (한국 골프장의 친환경적 개발에 관한 연구)

  • 김광두
    • Asian Journal of Turfgrass Science
    • /
    • v.12 no.1
    • /
    • pp.49-78
    • /
    • 1998
  • Nowadays, there are increasing demands of golf courses and it is necessary to make more golf courses than the present. To do this, we need to improve the environmental problems with the regional inhabitants, and it is said that the first thing to be considered in developing any golf course in Korea is to preserve the environment. In this context, the purpose of this study is to set forth several design factors to lessen the negative impacts which are accompanied with the development of golf courses. 1. The present conditions of golf courses in Korea Many new golf courses have come into being, particularly since the late 1980s, and now, in the year of 1997, over one hundred of golf courses are doing their business, yet the number of golf course is still less than required. So far, over a half of them have been made in the vicinity of Seoul on account of various reasons, and this has adversely affected on our natural environment. This unreasonable development of golf courses has caused serious water pollution, landslides and the other problems. Also, the topography of Korea is not good for golf courses. Although the demands of golf courses are increasing, the suitable sites for them are very limited, and therefore it is sometimes unavoidable to make golf courses on steep hills. Consequently, in designing golf courses in Korea, the most important thing is the balance between natural environment and artificial environment. 2.Eco-friendly golf course design factors 1) The concept of eco-friendly golf courses Ecologically sustainable and sound golf courses which are made by eco-friendly approaches 2)Basic conditions of eco-friendly golf courses (1)The most suitable sites (2) Conservation of existing ground as much as possible (3)Proper use of agricultural chemicals which have great impacts on the environment (4) Reasonable use of fertilizers (5) Developing a specialized fertilizer only for grass (6) Adaptation of organic agriculture (7) Improvement of grass sorts (8) Establishing reservoirs for purifying the water from golf courses 3) Eco-friendly golf courses (1) Location-Enough area /Gentle slope/Winding ground/Including lakes or streams /Not crossing wind's main direction Facing south or southeast /Suitable soIl for grass /Good drainage /Low level of underground water (2)Course layout and design -Consideration about existing contours as much as possible -Adaptation of Scotish design trend -Various holes' configuration -Consideration toward surrounding landscapes -Reducing grass areas -Giving buffer zones -Adapting computer methods in the process of site analysis and design (3) Eco-friendly considerations in constructing and managing golf courses -Protection of wildlife -Reuse of existing forests and preservation of topsoil -Renovation of old-fashioned courses -Reducing grass areas -Purification of water -Standization of management -Strict regulations against chemicals -Recycling organic materials -Through separation of the water inside golf courses and out of bounds -Getting proper construction works done in a due time 4.Eco-friendly considerations from a viewpoint of cultural environment 1) Well-matched landscape design and events planning 2) Implement of identifications and awarding systerns 3)Acknowledgement of superintendents' qualitications in the maintenance of golf courses 4)Increasing public golf courses and keeping good relationships with the neighbors near golf courses Key words: Pro-environmental development, Golf course.

  • PDF

A Study on the Recycle of Carbon Material in Anode of Secondary Battery (이차전지 음극재 탄소 소재 재활용에 대한 연구)

  • Han, Gyoung-Jae;Kim, Yu-Jin;Yoon, Seong-Jin;Kang, Yu-Jin;Jang, Min-Hyeok;Jo, Hyung-Kun;Cho, Hye-Ryeong;Seo, Dong-Jin;Park, Joo-Il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.59-66
    • /
    • 2022
  • Lithium-ion batteries have greatly expanded along with the mobile phone market, and as the electric vehicle business is activated in earnest, they will attract many people's attention even afterwards. Until now, many people have attracted attention to the recovery of valuable metals inside lithium-ion batteries, but graphite, which is mainly used as an anode material, is also worth recycling. Therefore, in order to recover graphite with high purity and valuable metals, graphite that can be used as an anode material of a secondary battery may be generated again through a regeneration process of purifying and separating graphite from a waste lithium-ion battery and recovering electrical characteristics of graphite. This paper describes the process of converting waste graphite into regenerated graphite and the environmental and economic effects of regenerated graphite.

Recent Development of Carbon Dioxide Conversion Technology (이산화탄소 전환 기술의 현황)

  • Choi, Ji-Na;Chang, Tae-Sun;Kim, Beom-Sik
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.229-249
    • /
    • 2012
  • At present, global warming and depletion of fossil fuels have been one of the big issues which should be solved for sustainable development in the future. CCS (carbon capture and sequestration) technology as the post $CO_2$ reduction technology has been considered as a promising solution for global warming due to increased carbon emission. However, the environmental and ecological effects of CCS have drawn concerns. There are needs for noble post reduction technology. More recently, CCU (carbon capture and utilization) Technology, which emphasizes transforming carbon dioxide into value-added chemicals rather than storing it, has been attracted attentions in terms of preventing global warming and recycling the renewable carbon source. In this paper, various technologies developed for carbon dioxide conversion both in gas and liquid phase have been reviewed. For the thermochemical catalysis in gas phase, the development of the catalytic system which can be performed at mild condition and the separation and purification technology with low energy supply is required. For the photochemical conversion in liquid phase, efficient photosensitizers and photocatalysts should be developed, and the photoelectrochemical systems which can utilize solar and electric energy simultaneously are also in development for more efficient carbon dioxide conversion. The energy needed in CCU must be renewable or unutilized one. CCU will be a key connection technology between renewable energy and bio industry development.

Effect of Solidago altissima L. Extract on Forage Crop Germination

  • Ho-Jun Gam;Yosep Kang;Eun-Jung Park;Ki-Yong Kim;Sang-Mo Kang;In-Jung Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.114-114
    • /
    • 2022
  • There are 28 families and 166 species of exotic weeds on agricultural land and among these, 23 families and 80 species of exotic weeds occur on pastures. Among them, the Solidago altissima is a perennial weed belonging to the asteraceae family and it is an exotic weed that spreads to the surrounding area using methods such as high seed production, vegetative propagation using underground rhizomes and allelochemical. Accordingly, in 2009, the Ministry of Environment designated it as an ecosystem-disrupting species. This study was conducted to obtain basic data about the effects of S.altissima derived allelochemicals on forage crops. The root of S.altissima was separated, dried in the shade and then pulverized to prepare an root powder. Powder was repeatedly extracted with methanol for 3 days and concentrated under reduced pressure to obtain an root methanol extract. Dissolve the extract in distilled water, dispense it in a separate-funnel and proceed with liquid-liquid extraction by adding equal amounts of n-haxane (Hex), chloroform (CHCI3), ethyl acetate (EtoAC), and butanol (BuOH) in order of increasing polarity. A seed-bioassay was performed using fractions for each solvent, followed by separation and purification by silica gel column chromatography. As a result of the fraction germination test for each solvent, the IC50 values using the fresh weight of each fraction were 898.3 mg L-1, 676.3 mg L-1, 1160 mg L-1 and 1360 mg L-1. CA, CB, and CC fractions were obtained through primary silica gel column chromatography that used CHCI3 fraction. As a result of seed-bioassay using each fraction, the IC50 values for the fresh weight of each fraction was 537.3 mg L-1, 1280 mg L-1 and 1947 mg L-1. Based on this, 5 fractions were obtained as a result of secondary silica gel column chromatography using the CA fraction. A seed-bioassay was performed, as a result, the lowest IC50 value was calculated as 226.7 mg L-1 in the CAE fraction. Based on this, the fraction was analyzed by GC-MS. The results of this study can be used as basic research data on the effects of weeds on forage crops and allelochemicals secreted from S. altissima.

  • PDF

Purification and Biological Activity of Ecdysterone from Korean Achyranthes radix (韓國産 牛膝의 Ecdysterone 抽出과 그 生理活性에 관한 硏究)

  • Kim, Jeong-Il;Lee, Jae-Yong;Kim, Chun-Su;Park, Kwang-E.
    • Journal of Sericultural and Entomological Science
    • /
    • v.25 no.1
    • /
    • pp.1-20
    • /
    • 1983
  • It has been known that the insect molting hormone and its analogues exist also in plant kingdom and their concentration has been found to be about 0.1~2.0% of dry matter, which is equivalent to $10^3{\sim}10^5$ times of those in insects. This study was carried out; 1) to isolate the phytoecdysones from Korean Achyranthes radix and characterize their physico-chemical properties. 2) to investigate the biological activity of this phytoecdysone on Bombyx mori larvae. The resuls were summarized as follows; 1. The extraction method of phytoecdysones was optimized by three consecutive reflux for 1hr using 200g of dried and milled radix per 1l methanol. 2. The purification from the crude extract was made by a series of steps such as precipitation of gum-type polymer with n-Butyl acetate, adsorption on technical grade silica and chromatography with neutral alumina. The conditions of each step were optimized and the resulting crude crystal was about 500mg per kg dry radix. 3. The crude crystal from the cultivated Achyranthes(Achyranthes japonia) contained ecdysterone (20-hydroxyecdysone) and inokosterone in the proportion of one to one. In order to separate these, a series of processes such as acetylation, separation by alumina column chromatography deacetylation by alcoholysis, deionization and crystallization were introduced and optimized 125mg of ecdysterone and 18mg of inokosterone per kg dry radix were thus obtained. 4. The wild Achyranthes (Achyranthes obtusifolia) radix was found to contain the ecdysterone only. A 285mg of ecdysterone was crystallized per kg dry radix. 5. Isolated ecdysterone, inodosterone and acetylated compounds were characterized by IR., UV., NMR spectroscopy, mp, TLC and densitometry. 6. Ligation experiment was undertaken to confirm the biological activity of the purified ecdysterone; the ecdysterone could induce larval-pupal metamorphosis in the ligated abdomen of 4th instar larvae injecting 0.5~1.0${\mu}g$. 7. By ecdysterone feeding experiment using artificial diet, it was elucidated that the critical time of feeding would be the first half of each instar resulting in increased weight of silk layer. 8. The ecdysterone was fed to 5th instar silkworm at the level of 1, 2, 3, 5ppm of dry feed of artificial diet containing 5% mulberry leaves for 72hrs. At 2ppm of the concentration. body weight and silk layer weight were arrived at maximum. But at higher concentrations body weight and silk layer weight decreased than the control group. At 2ppm of the concentration, body weight was increased by 12.5%. 9. Feeding 2ppm of ecdysterone at the later half of 5th instar, the duration of larvae was shortened.

  • PDF

Improved Genomic DNA Isolation from Soil (토양으로부터 genomic DNA의 효과적인 분리)

  • Kang Ju-Hyung;Kim Bo-Hye;Lee Sun-Yi;Kim Yeong-Jin;Lee Ju-Won;Park Young Min;Ahn Soon-Cheol
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.851-856
    • /
    • 2005
  • Although valuable microbes have been isolated from the soil for the various productions of useful components, the microbes which can be cultivated in the laboratory are only $0.1-1\%$ of all microbes. To solve this problem, the study has recently been tried for making the valuable components from the environment by directly separating unculturable micrbial DNA in the soil. But it is known that humic acid originated from the soil interrupts various restriction enzymes and molecular biological process. Thus, in order to prevent these problems, this study modified the method separated soil DNA with phenol, CTAB and PEG. In order to compare the degree of purity for each DNA and the molecular biological application process, $A_{260}/A_{280}$ ratio, restriction enzymes, and PCR were performed. In case of DNA by the modified method, total yield of DNA was lower but $A_{260}/A_{280}$ ratio was higher than the previously reported methods. It was confirmed that the degree of purity is improved by the modified method. But it was not cut off by all kinds of tested restriction enzymes because of the operation of a very small amount of interrupting substances. When PCR was operated with each diluted DNA in different concentrations and GAPDH primer, the DNA by the modified method could be processed for PCR in the concentration of 100 times higher than by the previously reported separation method. Therefore, this experiment can find out the possibility of utilization for the unknown substances by effectively removing the harmful materials including humic acid and help establishing metagenomic DNA library from the soil DNA having the high degree of purity.

Research and Development for Decontamination System of Spent Resin in Hanbit Nuclear Power Plant (한빛원전 폐수지 제염공정 개발연구)

  • Sung, Gi Hong
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.217-221
    • /
    • 2015
  • When reactor coolant leaks occur due to cracks of a steam generator's tube, radioactive materials contained in the primary cooling water in nuclear power plant are forced out toward the secondary systems. At this time the secondary water purification resin in the ion exchange resin tower of the steam generator blowdown system is contaminated by the radioactivity of the leaked radioactive materials, so we pack this in special containers and store temporarily because we could not dispose it by ourselves. If steam generator tube leakage occurs, it produces contaminated spent resins annually about 5,000~7,000 liters. This may increase the amount of nuclear waste productions, a disposal working cost and a unit price of generating electricity in the plant. For this reasons, it is required to develop a decontamination process technique for reducing the radioactive level of these resins enough to handle by the self-disposal method. In this research, First, Investigated the structure and properties of the ion exchange resin used in a steam generator blowdown system. Second, Checked for a occurrence status of contaminated spent resin and a disposal technology. Third, identified the chemical characteristics of the waste radionuclides of the spent resin, and examined ionic bonding and separation mechanism of radioactive nuclear species and a spent resin. Finally, we carried out the decontamination experiment using chemicals, ultrasound, microbubbles, supercritical carbon dioxide to process these spent resin. In the case of the spent resin decontamination method using chemicals, the higher the concentration of the drug decontamination efficiency was higher. In the ultrasound method, foreign matter of the spent resin was removed and was found that the level of radioactivity is below of the MDA. In the microbubbles method, we found that the concentration of the radioactivity decreased after the experiment, so it can be used to the decontamination process of the spent resin. In supercritical carbon dioxide method, we found that it also had a high decontamination efficiency. According to the results of these experiments, almost all decontamination method had a high efficiency, but considering the amounts of the secondary waste productions and work environment of the nuclear power plant, we judged the ultrasound and supercritical carbon dioxide method are suitable for application to the plant and we established the plant applicable decontamination process system on the basis of these two methods.

Ru-based Activated Carbon-MgO Mixed Catalyst for Depolymerization of Alginic Acid (루테늄 담지 활성탄-마그네시아 혼합 촉매 상에서 알긴산의 저분자화 연구)

  • Yang, Seungdo;Kim, Hyungjoo;Park, Jae Hyun;Kim, Do Heui
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.232-237
    • /
    • 2022
  • Biorefineries, in which renewable resources are utilized, are an eco-friendly alternative based on biomass feedstocks. Alginic acid, a major component of brown algae, which is a type of marine biomass, is widely used in various industries and can be converted into value-added chemicals such as sugars, sugar alcohols, furans, and organic acids via catalytic hydrothermal decomposition under certain conditions. In this study, ruthenium-supported activated carbon and magnesium oxide were mixed and applied to the depolymerization of alginic acid in a batch reactor. The addition of magnesium oxide as a basic promoter had a strong influence on product distribution. In this heterogeneous catalytic system, the separation and purification processes are also simplified. After the reaction, low molecular weight alcohols and organic acids with 5 or fewer carbons were produced. Specifically, under the optimal reaction conditions of 30 mL of 1 wt% alginic acid aqueous solution, 100 mg of ruthenium-supported activated carbon, 100 mg of magnesium oxide, 210 ℃ of reaction temperature, and 1 h of reaction time, total carbon yields of 29.8% for alcohols and 43.8% for a liquid product were obtained. Hence, it is suggested that this catalytic system results in the enhanced hydrogenolysis of alginic acid to value-added chemicals.