The existing input device is limited to keyboard and mouse. However, recently new type of input device has been developed in response to requests from users. To reflect this trend we propose the new type of input device that gives instruction as analyzing the hand motion of image without special device. After binarizing the skin color area using Cam-Shift method and tracking, it recognizes the hand motion by inputting the finger areas and the angles from the palm center point, which are separated through labeling, into four cardinal directions and counting them. In cases when specific background was not set and without gloves, the recognition rate remained approximately at 75 percent. However, when specific background was set and the person wore red gloves, the recognition rate increased to 90.2 percent due to reduction in noise.
WSN, or Wireless Sensor Network, consists of a multitude of inexpensive micro-sensors. Because the batteries in sensor nodes can not be replaced once they are deployed, the life of a WSN is absolutely determined by the batteries. So, energy efficiency of a network is a critical factor for long-life operation. LEACH protocol which divides WSN into two groups is a typical routing protocol based on the clustering scheme for the efficient use of limited energy. It is composed of round units which are separated into set-up and steady state. In this paper we propose a power saving scheme to minimize set-up phase itself and to involve a data comparison algorithm. We evaluate the performance of the proposed scheme in comparison with original LEACH protocol. Simulation results validate our scheme has better performance in terms of the number of alive nodes as time evolves and average energy dissipated.
Kim, Byeong Jun;Kim, Sung Yoon;Roh, Chun Su;Lee, Young Ho
The KSFM Journal of Fluid Machinery
/
v.19
no.4
/
pp.48-53
/
2016
The centrifugal separator which uses gravity separation method for oil-water separation, rotating at high-speed, is one of the most commonly used device for controlling the amount of the oil in waste water collected in bilge. The IMO (International Maritime Organization) has set regulations, also known as MARPOL 73/78, for the prevention of marine pollution. In addition, DET NORSKE VERITAS (DNV) has set standards regarding the assignment of Environmental Class Notation, CLEAN or CLEAN DESIGN, of ships. One of the requirements for classification is that in addition to conforming to MARPOL 73/78, more stringent measures must be taken as well. One of these measures is to limit the oil concentration in bilge water to less than 5ppm. So in this study, an Oil-Water Separator (OWS) is used together with multiple separating plates as a filtration system to be used as an oil-water separation device. The OWS operates using centrifugal separation in which the mixture is separated by centrifugal forces. The main purpose of this paper is to present the OWS separation efficiency according to the rotation speed, mass-flow rate, the angle and the number of stacked layers of the laminated plate using Computational Fluid Dynamics (CFD). Improvements to the device will be investigated from these results.
In this paper, we propose a simulation output analysis environment using Elastic Stack technology in order to reduce the complexity of the simulation analysis process. The proposed simulation output analysis environment automatically transfers simulation outputs to a centralized analysis server from a set of simulation execution resources, physically separated over a network, manages the collected simulation outputs in a fashion that further analysis tasks can be easily performed, and provides a connection to analysis and visualization services of Kibana in Elastic Stack. The proposed analysis environment provides scalability where a set of computation resources can be added on demand. We demonstrate how the proposed simulation output analysis environment can perform the simulation output analysis effectively with an example of spreading epidemic diseases, such as influenza and flu.
A vertical column pneumatic separator was modified to improve its separation performance. A branch column was installed at the center of the main column, which created a bypass flow and changed the flow rate of the main column before and after the branch column. To separate a mixture comprising light and heavy materials, the airflow in main column after the branch column was set to lift the only light materials and the airflow in main column before the branch column was set to prevent the flow of the light materials from flowing downwards. Materials directed into the branch column were separated from the flow and returned to the feeder through the cyclone linked to the branch column. The performances of the straight-type separator and the modified separator were compared using glass and zirconia beads with a narrow size distribution.
With the rapid accumulation of microarray data, it is a significant challenge to integrate available data sets addressing the same biological questions that can provide more samples and better experimental results. Sometimes, different microarray platforms make it difficult to effectively integrate data from several studies and there is no consensus on which method is the best to produce a single and unified data set. Methods using median rank score, quantile discretization and standardization (which directly combine rescaled gene expression values) and meta-analysis (which combine the results of individual studies at the interpretative level) are reviewed. Real data examples downloaded from GEO are used to compare the performance of these methods and to evaluate if the combined data set detects more reliable information from the separated data sets or not.
Background: A Teachable Machine is a kind of machine learning web-based tool for general persons. In this paper, the feasibility of Google's Teachable Machine (ver. 2.0) was studied in the diagnosis of the tooth-marked tongue. Methods: For machine learning of tooth-marked tongue diagnosis, a total of 1,250 tongue images were used on Kaggle's web site. Ninety percent of the images were used for the training data set, and the remaining 10% were used for the test data set. Using Google's Teachable Machine (ver. 2.0), machine learning was performed using separated images. To optimize the machine learning parameters, I measured the diagnosis accuracies according to the value of epoch, batch size, and learning rate. After hyper-parameter tuning, the ROC (receiver operating characteristic) analysis method determined the sensitivity (true positive rate, TPR) and specificity (false positive rate, FPR) of the machine learning model to diagnose the tooth-marked tongue. Results: To evaluate the usefulness of the Teachable Machine in clinical application, I used 634 tooth-marked tongue images and 491 no-marked tongue images for machine learning. When the epoch, batch size, and learning rate as hyper-parameters were 75, 0.0001, and 128, respectively, the accuracy of the tooth-marked tongue's diagnosis was best. The accuracies for the tooth-marked tongue and the no-marked tongue were 92.1% and 72.6%, respectively. And, the sensitivity (TPR) and specificity (FPR) were 0.92 and 0.28, respectively. Conclusion: These results are more accurate than Li's experimental results calculated with convolution neural network. Google's Teachable Machines show good performance by hyper-parameters tuning in the diagnosis of the tooth-marked tongue. We confirmed that the tool is useful for several clinical applications.
Lee, Geun Se;Jeong, Dong Hyeon;Moon, Yong Ho;Park, Won Kyung;Chae, Jang Won
Journal of Korean Society of Coastal and Ocean Engineers
/
v.33
no.6
/
pp.367-373
/
2021
In this study, deep learning model was set up to predict the wave heights inside a harbour. Various machine learning techniques were applied to the model in consideration of the transformation characteristics of offshore waves while propagating into the harbour. Pohang New Port was selected for model application, which had a serious problem of unloading due to swell and has lots of available wave data. Wave height, wave period, and wave direction at offshore sites and wave heights inside the harbour were used for the model input and output, respectively, and then the model was trained using deep learning method. By considering the correlation between the time series wave data of offshore and inside the harbour, the data set was separated into prevailing wave directions as a pre-processing method. As a result, It was confirmed that accuracy and stability of the model prediction are considerably increased.
Aromatase inhibitors (AI) are drugs that are widely used in treating estrogen receptor (ER)-positive breast cancer patients. Drug resistance is a major obstacle to aromatase inhibition therapy. There are diverse reasons behind acquired AI resistance. This study aims at identifying the plausible cause of acquired AI resistance in patients administered with non-steroidal AIs (anastrozole and letrozole). We used genomic, transcriptomic, epigenetic, and mutation data of breast invasive carcinoma from The Cancer Genomic Atlas database. The data was then separated into sensitive and resistant sets based on patients' responsiveness to the non-steroidal AIs. A sensitive set of 150 patients and a resistant set of 172 patients were included for the study. These data were collectively analyzed to probe into the factors that might be responsible for AI resistance. We identified 17 differentially regulated genes (DEGs) among the two groups. Then, methylation, mutation, miRNA, copy number variation, and pathway analyses were performed for these DEGs. The top mutated genes (FGFR3, CDKN2A, RNF208, MAPK4, MAPK15, HSD3B1, CRYBB2, CDC20B, TP53TG5, and MAPK8IP3) were predicted. We also identified a key miRNA - hsa-mir-1264 regulating the expression of CDC20B. Pathway analysis revealed HSD3B1 to be involved in estrogen biosynthesis. This study reveals the involvement of key genes that might be associated with the development of AI resistance in ER-positive breast cancers and hence may act as a potential prognostic and diagnostic biomarker for these patients.
Proceeding of Spring/Autumn Annual Conference of KHA
/
2006.11a
/
pp.208-211
/
2006
This study was to find out contemporary planning trends of rural houses in Na-po Munhwa village by analyzing their floor plan shapes and space relations & elements. There were built 240 houses in that village, but it were possible to collect housing data, floor plans & general building records of 120 houses, from house register. By analyzing those data, findings were as follows : 1) Floor plan shapes of rural houses had a tendency to 'ㅋ' shape type than simple box or transformed box types, and Room-Living-Room arrangement of centered living were very strong trends in those plans. 2) Public spaces, L.D.K
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.