• Title/Summary/Keyword: separate learning

Search Result 200, Processing Time 0.021 seconds

The development of Metadata Prototype for Educational Game (교육용 게임을 위한 메타데이터 프로토타입 개발)

  • Yoon, Sean-Jeang;Yoon, Tae-Soo
    • Journal of Korea Game Society
    • /
    • v.8 no.1
    • /
    • pp.3-13
    • /
    • 2008
  • We think that it is important to develop the metadata for educational game. Because they are applicable to game contents, separate learning sources and studying components in the game-based LCMS. But markets of eduainment and educational games are newborn field, so systematic development of metadata is not advanced yet. Therefore in this paper, we first established the design process of educational game metadata, and then according to the rule, we suggested this as a prototype. And we defined the extracted data as metadata for educational game through inspection of an expert group. If these metadata prototype are operated by adopting through standardization stage of public institutes, we can provide the convenience of searching, managing and recycling these metadata to learner, instructor and the developing institute. And we can also expect the prevention of overlapping investment.

  • PDF

Robust Segmentation for Low Quality Cell Images from Blood and Bone Marrow

  • Pan Chen;Fang Yi;Yan Xiang-Guo;Zheng Chong-Xun
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.637-644
    • /
    • 2006
  • Biomedical image is often complex. An applied image analysis system should deal with the images which are of quite low quality and are challenging to segment. This paper presents a framework for color cell image segmentation by learning and classification online. It is a robust two-stage scheme using kernel method and watershed transform. In first stage, a two-class SVM is employed to discriminate the pixels of object from background; where the SVM is trained on the data which has been analyzed using the mean shift procedure. A real-time training strategy is also developed for SVM. In second stage, as the post-processing, local watershed transform is used to separate clustering cells. Comparison with the SSF (Scale space filter) and classical watershed-based algorithm (those are often employed for cell image segmentation) is given. Experimental results demonstrate that the new method is more accurate and robust than compared methods.

Survey on Deep Learning-based Panoptic Segmentation Methods (딥 러닝 기반의 팬옵틱 분할 기법 분석)

  • Kwon, Jung Eun;Cho, Sung In
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.5
    • /
    • pp.209-214
    • /
    • 2021
  • Panoptic segmentation, which is now widely used in computer vision such as medical image analysis, and autonomous driving, helps understanding an image with holistic view. It identifies each pixel by assigning a unique class ID, and an instance ID. Specifically, it can classify 'thing' from 'stuff', and provide pixel-wise results of semantic prediction and object detection. As a result, it can solve both semantic segmentation and instance segmentation tasks through a unified single model, producing two different contexts for two segmentation tasks. Semantic segmentation task focuses on how to obtain multi-scale features from large receptive field, without losing low-level features. On the other hand, instance segmentation task focuses on how to separate 'thing' from 'stuff' and how to produce the representation of detected objects. With the advances of both segmentation techniques, several panoptic segmentation models have been proposed. Many researchers try to solve discrepancy problems between results of two segmentation branches that can be caused on the boundary of the object. In this survey paper, we will introduce the concept of panoptic segmentation, categorize the existing method into two representative methods and explain how it is operated on two methods: top-down method and bottom-up method. Then, we will analyze the performance of various methods with experimental results.

Detonation cell size model based on deep neural network for hydrogen, methane and propane mixtures with air and oxygen

  • Malik, Konrad;Zbikowski, Mateusz;Teodorczyk, Andrzej
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.424-431
    • /
    • 2019
  • The aim of the present study was to develop model for detonation cell sizes prediction based on a deep artificial neural network of hydrogen, methane and propane mixtures with air and oxygen. The discussion about the currently available algorithms compared existing solutions and resulted in a conclusion that there is a need for a new model, free from uncertainty of the effective activation energy and the reaction length definitions. The model offers a better and more feasible alternative to the existing ones. Resulting predictions were validated against experimental data obtained during the investigation of detonation parameters, as well as with data collected from the literature. Additionally, separate models for individual mixtures were created and compared with the main model. The comparison showed no drawbacks caused by fitting one model to many mixtures. Moreover, it was demonstrated that the model may be easily extended by including more independent variables. As an example, dependency on pressure was examined. The preparation of experimental data for deep neural network training was described in detail to allow reproducing the results obtained and extending the model to different mixtures and initial conditions. The source code of ready to use models is also provided.

Design and Implementation of a Mobile-based Sarcopenia Prediction and Monitoring System (모바일 기반의 '근감소증' 예측 및 모니터링 시스템 설계 및 구현)

  • Kang, Hyeonmin;Park, Chaieun;Ju, Minina;Seo, Seokkyo;Jeon, Justin Y.;Kim, Jinwoo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.3
    • /
    • pp.510-518
    • /
    • 2022
  • This paper confirmed the technical reliability of mobile-based sarcopenia prediction and monitoring system. In implementing the developed system, we designed using only sensors built into a smartphone without a separate external device. The prediction system predicts the possibility of sarcopenia without visiting a hospital by performing the SARC-F survey, the 5-time chair stand test, and the rapid tapping test. The Monitoring system tracks and analyzes the average walking speed in daily life to quickly detect the risk of sarcopenia. Through this, it is possible to rapid detection of undiagnosed risk of undiagnosed sarcopenia and initiate appropriate medical treatment. Through prediction and monitoring system, the user may predict and manage sarcopenia, and the developed system can have a positive effect on reducing medical demand and reducing medical costs. In addition, collected data is useful for the patient-doctor communication. Furthermore, the collected data can be used for learning data of artificial intelligence, contributing to medical artificial intelligence and e-health industry.

Data Standardization Method for Quality Management of Cloud Computing Services using Artificial Intelligence (인공지능을 활용한 클라우드 컴퓨팅 서비스의 품질 관리를 위한 데이터 정형화 방법)

  • Jung, Hyun Chul;Seo, Kwang-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.133-137
    • /
    • 2022
  • In the smart industry where data plays an important role, cloud computing is being used in a complex and advanced way as a convergence technology because it has and fits well with its strengths. Accordingly, in order to utilize artificial intelligence rather than human beings for quality management of cloud computing services, a consistent standardization method of data collected from various nodes in various areas is required. Therefore, this study analyzed technologies and cases for incorporating artificial intelligence into specific services through previous studies, suggested a plan to use artificial intelligence to comprehensively standardize data in quality management of cloud computing services, and then verified it through case studies. It can also be applied to the artificial intelligence learning model that analyzes the risks arising from the data formalization method presented in this study and predicts the quality risks that are likely to occur. However, there is also a limitation that separate policy development for service quality management needs to be supplemented.

Improved Minimum Spanning Tree based Image Segmentation with Guided Matting

  • Wang, Weixing;Tu, Angyan;Bergholm, Fredrik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.211-230
    • /
    • 2022
  • In image segmentation, for the condition that objects (targets) and background in an image are intertwined or their common boundaries are vague as well as their textures are similar, and the targets in images are greatly variable, the deep learning might be difficult to use. Hence, a new method based on graph theory and guided feathering is proposed. First, it uses a guided feathering algorithm to initially separate the objects from background roughly, then, the image is separated into two different images: foreground image and background image, subsequently, the two images are segmented accurately by using the improved graph-based algorithm respectively, and finally, the two segmented images are merged together as the final segmentation result. For the graph-based new algorithm, it is improved based on MST in three main aspects: (1) the differences between the functions of intra-regional and inter-regional; (2) the function of edge weight; and (3) re-merge mechanism after segmentation in graph mapping. Compared to the traditional algorithms such as region merging, ordinary MST and thresholding, the studied algorithm has the better segmentation accuracy and effect, therefore it has the significant superiority.

Depth Map Completion using Nearest Neighbor Kernel (최근접 이웃 커널을 이용한 깊이 영상 완성 기술)

  • Taehyun, Jeong;Kutub, Uddin;Byung Tae, Oh
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.906-913
    • /
    • 2022
  • In this paper, we propose a new deep network architecture using nearest neighbor kernel for the estimation of dense depth map from its sparse map and corresponding color information. First, we propose to decompose the depth map signal into the structure and details for easier prediction. We then propose two separate subnetworks for prediction of both structure and details using classification and regression approaches, respectively. Moreover, the nearest neighboring kernel method has been newly proposed for accurate prediction of structure signal. As a result, the proposed method showed better results than other methods quantitatively and qualitatively.

A Study on the Development of Industrial Robot Workplace Safety System (산업용 로봇 작업장 안전시스템 개발에 대한 연구)

  • Jin-Bae Kim;Sun-Hyun Kwon;Man-Soo Lee
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.3
    • /
    • pp.17-22
    • /
    • 2023
  • As the importance of artificial intelligence grows rapidly and emerges as a leader in technology, it is becoming an important variable in the next-generation industrial system along with the robot industry. In this study, a safety system was developed using deep learning technology to provide worker safety in a robot workplace environment. The implemented safety system has multiple cameras installed with various viewing directions to avoid blind spots caused by interference. Workers in various scenario situations were detected, and appropriate robot response scenarios were implemented according to the worker's risk level through IO communication. For human detection, the YOLO algorithm, which is widely used in object detection, was used, and a separate robot class was added and learned to compensate for the problem of misrecognizing the robot as a human. The performance of the implemented system was evaluated by operator detection performance by applying various operator scenarios, and it was confirmed that the safety system operated stably.

RNN-based integrated system for real-time sensor fault detection and fault-informed accident diagnosis in nuclear power plant accidents

  • Jeonghun Choi;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.814-826
    • /
    • 2023
  • Sensor faults in nuclear power plant instrumentation have the potential to spread negative effects from wrong signals that can cause an accident misdiagnosis by plant operators. To detect sensor faults and make accurate accident diagnoses, prior studies have developed a supervised learning-based sensor fault detection model and an accident diagnosis model with faulty sensor isolation. Even though the developed neural network models demonstrated satisfactory performance, their diagnosis performance should be reevaluated considering real-time connection. When operating in real-time, the diagnosis model is expected to indiscriminately accept fault data before receiving delayed fault information transferred from the previous fault detection model. The uncertainty of neural networks can also have a significant impact following the sensor fault features. In the present work, a pilot study was conducted to connect two models and observe actual outcomes from a real-time application with an integrated system. While the initial results showed an overall successful diagnosis, some issues were observed. To recover the diagnosis performance degradations, additive logics were applied to minimize the diagnosis failures that were not observed in the previous validations of the separate models. The results of a case study were then analyzed in terms of the real-time diagnosis outputs that plant operators would actually face in an emergency situation.