• 제목/요약/키워드: sentiments

검색결과 214건 처리시간 0.036초

감성분석 결과와 사용자 만족도와의 관계 -기상청 사례를 중심으로- (Relationship between Result of Sentiment Analysis and User Satisfaction -The case of Korean Meteorological Administration-)

  • 김인겸;김혜민;임병환;이기광
    • 한국콘텐츠학회논문지
    • /
    • 제16권10호
    • /
    • pp.393-402
    • /
    • 2016
  • 기상청에서 현재 시행되고 있는 만족도 설문조사의 한계를 보완하기 위해 SNS를 통한 감성분석이 활용될 수 있다. 감성분석은 2011~2014년 동안 '기상청'을 언급한 트위터를 수집하여 나이브 베이즈 방법으로 긍정, 부정, 중립 감성을 분류하였다. 기본적인 나이브 베이즈 방법에 긍정, 부정, 중립의 각 감성에서만 출현한 형태소들로 추가사전을 만들어 감성분석의 정확도를 향상시키는 방법을 제안하였다. 분석결과 기본적인 나이브 베이즈 방법으로 감성을 분류할 경우 약 75%의 정확도로 학습데이터를 재현한데 반해 추가 사전을 적용할 경우 약 97%의 정확성을 보였다. 추가사전을 활용하여 검증자료의 감성을 분류한 결과 약 75%의 분류 정확도를 보였다. 낮은 분류 정확도는 향후 기상 관련의 다양한 키워드를 포함시켜 학습데이터 양을 늘려 감성사전의 질을 높임과 동시에 상시적인 사전의 업데이트를 통해 개선될 수 있을 것이다. 한편, 개별 어휘의 사전적 의미에 기반한 감성분석과 달리 문장의 의미에 기반하여 감성을 분류할 경우 부정적 감성 비율의 증가와 만족도 변화 추이를 설명할 수 있을 것으로 보여 향후 설문조사를 보완할 수 있는 좋은 수단으로 SNS를 통한 감성분석이 활용될 수 있을 것으로 사료된다.

A Study on Efficient Market Hypothesis to Predict Exchange Rate Trends Using Sentiment Analysis of Twitter Data

  • Komariah, Kokoy Siti;Machbub, Carmadi;Prihatmanto, Ary S.;Sin, Bong-Kee
    • 한국멀티미디어학회논문지
    • /
    • 제19권7호
    • /
    • pp.1107-1115
    • /
    • 2016
  • Efficient Market Hypothesis (EMH), states that at any point in time in a liquid market security prices fully reflect all available information. This paper presents a study of proving the hypothesis through daily Twitter sentiments using the hybrid approach of the lexicon-based approach and the naïve Bayes classifier. In this research we analyze the currency exchange rate movement of Indonesia Rupiah vs US dollar as a way of testing the Efficient Market Hypothesis. In order to find a correlation between the prediction sentiments from Twitter data and the actual currency exchange rate trends we collect Twitter data every day and compute the overall sentiment to label them as positive or negative. Experimental results have shown 69% correct prediction of sentiment analysis and 65.7% correlation with positive sentiments. This implies that EMH is semi-strong Efficient Market Hypothesis, and that public information provide by Twitter sentiment correlate with changes in the exchange market trends.

집단 감성과 모바일 게임 사용경험 : 카카오게임 사례연구 (Collective Sentiments and Users' Feedback to Game Contents : Analysis of Mobile Game UX based on Social Big Data Mining)

  • 천영준;곽규태
    • 한국게임학회 논문지
    • /
    • 제15권4호
    • /
    • pp.145-156
    • /
    • 2015
  • 현재까지 모바일 게임 사용자 연구는 개별 콘텐츠의 재미, 중독성, 편의성과 같은 1차적 정서를 분석하는 차원에 머물러 있다. 그러나 스마트폰의 확산 이후 사용자들의 멀티태스킹이 보편화되면서 사용자의 게임 콘텐츠 경험은 복잡해지고 있다. 따라서 다양한 행위를 동시에 수행하는 사용자의 관점에서 모바일 게임에 대한 보다 깊이 있는 분석이 필요한 상황이다. 본 연구는 집단 감성의 관점에서 모바일 게임 사용자들의 연결된 심성 모형을 포착하고자 했다. 이를 위해 사용자들의 비의도성과 의도성을 동시에 포착할 수 있는 소셜 데이터 분석을 실시했으며, 그 결과로 서비스의 교차 소비, 정보 추천방식의 다양화, 관계 기반의 과제 경험을 주요 이슈로 제시했다.

심리학적 감정과 소셜 웹 자료를 이용한 감성의 실증적 분류 (Empirical Sentiment Classification Using Psychological Emotions and Social Web Data)

  • 장문수
    • 한국지능시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.563-569
    • /
    • 2012
  • 소셜 웹이 확산되면서 오피니언 마이닝 혹은 감성 분석 연구가 주목을 받고 있다. 감성 분석을 위해서는 감성을 판별하기 위한 감성자원이 제공되어야 한다. 기존 감성 분석에서는 감성의 극성에 대한 강도를 표현하는 방법으로 리소스를 구축하고 이를 통하여 의견의 극성을 결정하였다. 본 논문에서는 의견의 극성뿐만 아니라 긍/부정의 근거가 되는 감성의 카테고리를 구성하고자 한다. 본 논문에서는 합리적인 분류를 위하여 심리학적 감정들을 초기 감성으로 정의한다. 그리고 실제로 소셜 웹에서 사용되는 감성의 분포를 얻기 위하여 소셜 웹의 텍스트를 분석하여 감성 정보를 추출한다. 추출한 감성 정보를 이용하여 초기 감성들을 재분류함으로써 소셜 웹을 위한 감성 카테고리를 구성한다. 본 논문에서는 이 방법을 통하여 23개의 감성 카테고리를 제시한다.

The Belt Road Initiatives, Identity Politics, and The Making of Southeast Asian Identity

  • Pamungkas, Cahyo;Hakam, Saiful
    • 수완나부미
    • /
    • 제11권2호
    • /
    • pp.59-83
    • /
    • 2019
  • The Chinese Belt Road initiatives in the Southeast Asian countries marked a new chapter in the development of China political influence on this region. This article looks at the initiative from the cultural dimension and aims to place its narrative as the entry point to understand the use of identity politics in Asian countries that target the Chinese diaspora. This topic relates to the primordial sentiments of Southeast Asian nations amid massive Chinese investment in the region. The issue of Chinese investments under the Belt Road Initiative corridor has a relationship with the formation of anti-Chinese discourse and anti-communist in some Southeast Asian countries. We took the cases of Indonesian and Malaysian elections to observe the use of identity politics and anti-Chinese political discourse in Southeast Asia. In both cases, a common issue emerged, that of the strengthening both Islamic and indigenous sensibilities. The establishment of ASEAN during the Cold War may be seen then as an anti-thesis to emerging Chinese power. However, anti-Chinese and anti-communism sentiments were not enough to unite the forces of the nations of Southeast Asia. We have concluded that brotherhood, mutual prosperity, and anti-neo-colonialism are yet to be fostered completely to make a distinct ASEAN identity.

  • PDF

Sentiment Analysis of Product Reviews to Identify Deceptive Rating Information in Social Media: A SentiDeceptive Approach

  • Marwat, M. Irfan;Khan, Javed Ali;Alshehri, Dr. Mohammad Dahman;Ali, Muhammad Asghar;Hizbullah;Ali, Haider;Assam, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권3호
    • /
    • pp.830-860
    • /
    • 2022
  • [Introduction] Nowadays, many companies are shifting their businesses online due to the growing trend among customers to buy and shop online, as people prefer online purchasing products. [Problem] Users share a vast amount of information about products, making it difficult and challenging for the end-users to make certain decisions. [Motivation] Therefore, we need a mechanism to automatically analyze end-user opinions, thoughts, or feelings in the social media platform about the products that might be useful for the customers to make or change their decisions about buying or purchasing specific products. [Proposed Solution] For this purpose, we proposed an automated SentiDecpective approach, which classifies end-user reviews into negative, positive, and neutral sentiments and identifies deceptive crowd-users rating information in the social media platform to help the user in decision-making. [Methodology] For this purpose, we first collected 11781 end-users comments from the Amazon store and Flipkart web application covering distant products, such as watches, mobile, shoes, clothes, and perfumes. Next, we develop a coding guideline used as a base for the comments annotation process. We then applied the content analysis approach and existing VADER library to annotate the end-user comments in the data set with the identified codes, which results in a labelled data set used as an input to the machine learning classifiers. Finally, we applied the sentiment analysis approach to identify the end-users opinions and overcome the deceptive rating information in the social media platforms by first preprocessing the input data to remove the irrelevant (stop words, special characters, etc.) data from the dataset, employing two standard resampling approaches to balance the data set, i-e, oversampling, and under-sampling, extract different features (TF-IDF and BOW) from the textual data in the data set and then train & test the machine learning algorithms by applying a standard cross-validation approach (KFold and Shuffle Split). [Results/Outcomes] Furthermore, to support our research study, we developed an automated tool that automatically analyzes each customer feedback and displays the collective sentiments of customers about a specific product with the help of a graph, which helps customers to make certain decisions. In a nutshell, our proposed sentiments approach produces good results when identifying the customer sentiments from the online user feedbacks, i-e, obtained an average 94.01% precision, 93.69% recall, and 93.81% F-measure value for classifying positive sentiments.

Intensified Sentiment Analysis of Customer Product Reviews Using Acoustic and Textual Features

  • Govindaraj, Sureshkumar;Gopalakrishnan, Kumaravelan
    • ETRI Journal
    • /
    • 제38권3호
    • /
    • pp.494-501
    • /
    • 2016
  • Sentiment analysis incorporates natural language processing and artificial intelligence and has evolved as an important research area. Sentiment analysis on product reviews has been used in widespread applications to improve customer retention and business processes. In this paper, we propose a method for performing an intensified sentiment analysis on customer product reviews. The method involves the extraction of two feature sets from each of the given customer product reviews, a set of acoustic features (representing emotions) and a set of lexical features (representing sentiments). These sets are then combined and used in a supervised classifier to predict the sentiments of customers. We use an audio speech dataset prepared from Amazon product reviews and downloaded from the YouTube portal for the purposes of our experimental evaluations.

A Survey of Arabic Thematic Sentiment Analysis Based on Topic Modeling

  • Basabain, Seham
    • International Journal of Computer Science & Network Security
    • /
    • 제21권9호
    • /
    • pp.155-162
    • /
    • 2021
  • The expansion of the world wide web has led to a huge amount of user generated content over different forums and social media platforms, these rich data resources offer the opportunity to reflect, and track changing public sentiments and help to develop proactive reactions strategies for decision and policy makers. Analysis of public emotions and opinions towards events and sentimental trends can help to address unforeseen areas of public concerns. The need of developing systems to analyze these sentiments and the topics behind them has emerged tremendously. While most existing works reported in the literature have been carried out in English, this paper, in contrast, aims to review recent research works in Arabic language in the field of thematic sentiment analysis and which techniques they have utilized to accomplish this task. The findings show that the prevailing techniques in Arabic topic-based sentiment analysis are based on traditional approaches and machine learning methods. In addition, it has been found that considerably limited recent studies have utilized deep learning approaches to build high performance models.

A Study on the Sentiment Analysis of Contemporary Pop Musicians and Classical Music Composers

  • Park, Youngjoo
    • International Journal of Advanced Culture Technology
    • /
    • 제10권3호
    • /
    • pp.352-359
    • /
    • 2022
  • The study examined a sentiment analysis based on Tweeter messages between contemporary pop musicians and classical music composers. Musicians of each genre were carefully selected for the sentiment analysis. Many opinion messages on Tweets that users have discussed were collected, and the messages were evaluated by using Naïve Bayes Classifier. The results demonstrated that users showed high positive sentiments for the two different genres. However, on average, the positive sentiment values for classical music composers are higher than for contemporary pop musicians. In addition, the rankings of the highest positive sentiments among contemporary pop musicians and classical music composers did not coincide with the popularity of the two different genres of musicians. This study will contribute to the study of future sentimental analysis between music and musicians.

The Impact of Topic Distribution on Review Sentiment: A Comparative Study between South Korea and the U.S.

  • Cho, Mina;Hwang, Dugmee;Jeon, Seongmin
    • 한국벤처창업학회:학술대회논문집
    • /
    • 한국벤처창업학회 2022년도 춘계학술대회
    • /
    • pp.123-126
    • /
    • 2022
  • Online reviews offer valuable information to businesses by reflecting consumer experiences about their products and services. Two important aspects of online reviews are first, the topics consumers choose to address and second, the sentiments expressed in their reviews. Building upon previous literature that shows online reviews are context-dependent, we examine the impact of topic distribution on review sentiment in South Korea and the U.S. during pre-and post-pandemic periods. After performing topic modeling on Airbnb app review data, we measure the contribution of each topic on review sentiment using SHAP values. Our results indicate variations in topic distribution trends between 2018 and 2021. Also, the order and magnitude of topics' impact on review sentiment change between pre-and post-pandemic periods for both countries. This study can help businesses to understand how topics and sentiments associated with their products and services changed after pandemic, and also help them identify areas of improvement.

  • PDF