• Title/Summary/Keyword: sensory feedback

Search Result 100, Processing Time 0.02 seconds

Power-Efficient Wireless Neural Stimulating System Design for Implantable Medical Devices

  • Lee, Hyung-Min;Ghovanloo, Maysam
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.133-140
    • /
    • 2015
  • Neural stimulating implantable medical devices (IMDs) have been widely used to treat neurological diseases or interface with sensory feedback for amputees or patients suffering from severe paralysis. More recent IMDs, such as retinal implants or brain-computer interfaces, demand higher performance to enable sophisticated therapies, while consuming power at higher orders of magnitude to handle more functions on a larger scale at higher rates, which limits the ability to supply the IMDs with primary batteries. Inductive power transmission across the skin is a viable solution to power up an IMD, while it demands high power efficiencies at every power delivery stage for safe and effective stimulation without increasing the surrounding tissue's temperature. This paper reviews various wireless neural stimulating systems and their power management techniques to maximize IMD power efficiency. We also explore both wireless electrical and optical stimulation mechanisms and their power requirements in implantable neural interface applications.

Development of Fuzzy Controller for Camera Autotracking System (원격 감시카메라 자동추적시스템의 퍼지제어기 개발에 관한 연구)

  • 윤지섭;박영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2062-2072
    • /
    • 1994
  • This paper presents the development of a fuzzy controller for driving camera pan/tilt device so that the camera's viewing direction can automatically track a moving object. To achieve computational efficiency a non-contact type displacement follower is used as a feedback sensor instead of a vision camera. The displacement follower, however, is extremely sensitive to object's lighting condition and results in unstable response at high speed. To this end, a fuzzy controller is developed in such a way to provide stable tracking performance at high speed where the sensory signal is subjected to intermittant disturbances of large magnitude. The test result shows stable tracking response even for high speed and non-uniform lighting condition. The resulting camera autotracking system can be adopted as an effective tool for visual transfer in the context of teleoperation and autonomous robotics.

An Evolutionary Optimization Approach for Optimal Hopping of Humanoid Robots

  • Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2420-2426
    • /
    • 2015
  • This paper proposes an evolutionary optimization approach for optimal hopping of humanoid robots. In the proposed approach, the hopping trajectory is generated by a central pattern generator (CPG). The CPG is one of the biologically inspired approaches, and it generates rhythmic signals by using neural oscillators. During the hopping motion, the disturbance caused by the ground reaction forces is compensated for by utilizing the sensory feedback in the CPG. Posture control is essential for a stable hopping motion. A posture controller is utilized to maintain the balance of the humanoid robot while hopping. In addition, a compliance controller using a virtual spring-damper model is applied for stable landing. For optimal hopping, the optimization of the hopping motion is formulated as a minimization problem with equality constraints. To solve this problem, two-phase evolutionary programming is employed. The proposed approach is verified through computer simulations using a simulated model of the small-sized humanoid robot platform DARwIn-OP.

3D motion estimation using multisensor data fusion (센서융합을 이용한 3차원 물체의 동작 예측)

  • 양우석;장종환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.679-684
    • /
    • 1993
  • This article presents an approach to estimate the general 3D motion of a polyhedral object using multiple, sensory data some of which may not provide sufficient information for the estimation of object motion. Motion can be estimated continuously from each sensor through the analysis of the instantaneous state of an object. We have introduced a method based on Moore-Penrose pseudo-inverse theory to estimate the instantaneous state of an object. A linear feedback estimation algorithm is discussed to estimate the object 3D motion. Then, the motion estimated from each sensor is fused to provide more accurate and reliable information about the motion of an unknown object. The techniques of multisensor data fusion can be categorized into three methods: averaging, decision, and guiding. We present a fusion algorithm which combines averaging and decision.

  • PDF

A research on feedback effect according to different sensory modality for attention recovery (집중력 회복을 위한 감각 모달리티 별 피드백에 대한 연구)

  • Hyun, Hye-Jung;Whang, Min-Cheol;Park, Jun-Seok;Lee, Yoon-Joung;Kim, Young-Joo;Kim, Jong-Hwa
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.137-142
    • /
    • 2007
  • 한정된 주의력 자원을 회복 시키기 위한 방법 중 피드백이 효과가 있는 것으로 보고되고 있다. 그러나 피드백의 구체적 내용에 대한 집중력 회복의 연구는 미미하다. 본 연구는 집중력을 회복할 수 있는 감각적 자극 중 정서적 피드백 간의 효과 차이를 분석 하였다. 집중력을 평가하기 위한 온라인 실험 시스템을 구축하고 시각, 청각, 촉각 피드백 자극을 제시하여 각각의 감각자극과 집중력 회복의 효과를 분석 하였다. 실험 참여자의 감각 피드백의 선호도에 따른 영향 요인을 알아보기 위하여 실험 후 주관적 설문을 실시하였다. 감각 피드백을 6명의 대학원생에게 일주일에 걸쳐 반복적으로 약200개의 자극을 제시하고 5회 이상 실험을 통하여 얻어진 30회 결과를 분석하였다. 결과적으로 피드백 별 수행 수준에서는 청각, 촉각, 시각 순으로 효과가 높았으며, 반응 시간에서는 촉각, 청각, 시각 순으로 효과적으로 나타났다.

  • PDF

A hierachical control structure of a robot manipulator for conveyor tracking (컨베이어 추적을 위한 로보트 매니퓰레이터의 계층적 제어구조)

  • 박태형;이영대;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1046-1051
    • /
    • 1991
  • For the conveyor tracking application of a robot manipulator, a new control scheme is presented. The presented scheme is divided into two stages : the upper one is the motion planning stage and the lower one is the motion control stage. In the upper stage, the nominal trajectory which tracks the part moving in a constant velocity, is planned considering the robot arm dynamics. On the other hand, in the lower level, the perturbed trajectory is generated to track the variation in the velocity of conveyor belt via sensory feedback and the perturbed arm dynamics. In both stages, the conveyor tracking problem is formulated as an optimal tracking problem, and the torque constraints of a robot manipulator are taken into account. Simulation results are then presented and discussed.

  • PDF

The Effects of Motor Control with Active Movement and Passive Movement (능동운동과 수동운동이 운동조절에 미치는 영향)

  • Bae Sung-Soo;Kim Cheul-Yong;HwangBo Gak;Chung Hyun-Ae;Choi Jae-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.11 no.3
    • /
    • pp.13-21
    • /
    • 1999
  • Active movement is able to actively contract his muscles and move a segment either with or without assistance. This movement maintain physiologic elasticity and contractility of the participating muscles, provide sensory feedback from the contracting muscles and stimulus for bone integrity as well as increase circulation and prevent thrombus formation, in addition to develop coordination and moor skills for functional activities. Passive movement is the motion to the external force; gravity, machine, another individuals. Active movement is more activated rather than passived on the central nervous system. Therefore, we think that active movement is more effected facilitating through specific inhibitory mobilization of muscle.

  • PDF

Biped Walking of Hydraulic Humanoid Robot on Inclined Floors (유압식 이족 휴머노이드 로봇의 경사면 보행 연구)

  • Kim, Jung-Yup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.258-266
    • /
    • 2012
  • This paper describes a biped walking algorithm for a hydraulic humanoid robot on inclined floors. To realize stable and robust biped walking, the walking algorithm was divided into five control strategies. The first is a joint position control strategy. This strategy is for tracking desired joint position trajectories with a gain switching. The second is a multi-model based ZMP (Zero Moment Point) control strategy for dynamic balance. The third is a walking pattern flow control strategy for smooth transition from step to step. The fourth is an ankle compliance control, which increases the dynamic stability at the moment of floor contact. The last is an upright pose control strategy for robust walking on an inclined floor. All strategies are based on simple pendulum models and include practical sensory feedback in order to implement the strategies on a physical robot. Finally, the performance of the control strategies are evaluated and verified through dynamic simulations of a hydraulic humanoid on level and inclined floors.

Rhythmic Initiation in the respect of Information Processing approach (정보처리접근에서의 율동적 개시)

  • Choi, Jae-Won;Chung, Hyun-Ae
    • PNF and Movement
    • /
    • v.9 no.1
    • /
    • pp.55-63
    • /
    • 2011
  • Purpose : This study was to investigate the application of Rhythmic Initiation(RI) in the respect of information processing in motor learning. Methods : A computer-aided literature search was performed in PubMed and adapted to the other databases and the others were in published books. The following keywords were used: Rhythmic Initiation, attention, memory, motor accuracy, feedback, motor learning, motor control, PNF, cognition. Results : The characterization of RI is rhythmic motion of limb or body through the desired range, starting with passive motion and progressing to active resisted movement. This study suggested that the relationship between of RI and motor learning through the respect of information processing, memory, attention and motor accuracy. Conclusion : Only Rhythmic Initiation, specifically focused on the effects of information processing approach, suggesting that RI can be positively influeced on sensory-perception, attention, memory, motor accuracy. however, it is unclear whether positive effects in the laboratory and field can be generalized to improve. In addition, sustainability of motor learning with RI remains uncertain.

Effects of Motor Learning Guided Laryngeal Motor Control Therapy for Muscle Misuse Dysphonia (운동학습이론에 기초한 발성운동조절법이 근오용성 발성장애의 음성에 미치는 효과)

  • Seo, In-Hyo;Lee, Ok-Bun;Lee, Sang-Joon;Chung, Phil-Sang
    • Phonetics and Speech Sciences
    • /
    • v.3 no.3
    • /
    • pp.133-140
    • /
    • 2011
  • Muscle misuse dysphonia (MMD) is defined as a behavioral voice disorder resulting from inappropriate contractions of intrinsic and/or extrinsic laryngeal muscles. The purpose of this study was to investigate the effect of motor learning guided laryngeal motor control therapy (MLG-LMCT) which is designed to improve an existing LMT and further the effective voice treatment on people with muscle misuse dysphonia. Forty-six people with MMD (M:F=16:30) participated in this study. The voice samples of the participants were recorded to investigate the effect of MLG-LMCT before and after the voice therapy. Voice samples were analyzed via electro-glotto-graph (EGG). Contact quotient (CQ), speed quotient (SQ), and waveform were reported. In addition, perceptual and acoustical evaluation were conducted to determine the change of voice improvement after treatment. The experimenter massaged the tensioned muscles around the neck. In order to find more proper phonation the experimenter showed the subjects their EGG wave forms as to whether or not they are moving the vocal folds to the appropriate position. Therefore, the EGG wave forms were used as a type of visual feedback. With the wave form, the experimenter helped subjects move the vocal folds and laryngeal muscles to find more proper voice production. The sensory stimuli from the experimenter gradually faded out. A paired dependent t- test revealed that there was significant differences in CQ between pre- and post-therapy. Perceptually, overall, rough, breathy, strain, and transition were significantly reduced. Acoustically, there were significant differences in Fo, jitter, shimmer, and NHR. After using MLG-LMCT, most of the subjects showed improvements in voice quality. The results from this study led us to the following conclusions: Motor learning guided laryngeal motor control therapy (MLG-LMCT) has reduces muscle misuse dysphonia. These results may occur because a visual feedback from EGG wave form can maintain the effect of the muscle tension reduction from laryngeal manual therapy. In case of people with MMD who reduced muscle tension from the therapy (LMT) but, not appropriately manipulating the location of larynx or adducting the vocal folds, MLG-LMCT might be an alternative therapy approach.

  • PDF