• 제목/요약/키워드: sensor-less

검색결과 1,056건 처리시간 0.024초

편마비 다리환자를 위한 보행보조로봇의 발목 2축 힘센서 설계 (Design of Calf Link Force Sensor of Walking Assist Robot of Leg Patients)

  • 최치훈;김갑순
    • 센서학회지
    • /
    • 제26권5호
    • /
    • pp.353-359
    • /
    • 2017
  • This paper describes the design and manufacture of a ankle two-axis force sensor of a walking assist robot for hemiplegic leg patient. The walking assist robot for the hemiplegic leg patient can safely control the robot by detecting whether the foot wearing the walking assist robot is in contact with the obstacle or not. To do so, a two-axis force sensor should be attached to the robot's ankle. The sensor is used to measure the force of a patient's ankle lower part. The two-axis force sensor is composed of a Fx force sensor, a Fy force sensor and a pulley, and they detect the x and y direction forces, respectively. The two-axis force sensor was designed using by FEM(Finite Element Method), and manufactured using by strain-gages. The characteristics experiment of the two-axis force sensor was carried out respectively. The test results indicated that the interference error of the two-axis force sensor was less than 1.2%, the repeatability error and the non-linearity of the two-axis force sensor was less than 0.04% respectively. Therefore, the fabricated two-axis force sensor can be used to measure the force of ankle lower part in the walking assist robot.

건식식각 기술 이용한 실리콘 압력센서의 특성 (Characteristics silicon pressure sensor using dry etching technology)

  • 우동균;이경일;김흥락;서호철;이영태
    • 센서학회지
    • /
    • 제19권2호
    • /
    • pp.137-141
    • /
    • 2010
  • In this paper, we fabricated silicon piezoresistive pressure sensor with dry etching technology which used Deep-RIE and etching delay technology which used SOI(silicon-on-insulator) wafer. We improved pressure sensor offset and its temperature dependence by removing oxidation layer of SOI wafer which was used for dry etching delay layer. Sensitivity of the fabricated pressure sensor was about 0.56 mV/V${\cdot}$kPa at 10 kPa full-scale, and nonlinearity of the fabricated pressure sensor was less than 2 %F.S. The zero off-set change rate was less than 0.6 %F.S.

스마트 3축 힘센서 설계 (Design of Smart Three-Axis Force Sensor)

  • 이경준;김현민;김갑순
    • 제어로봇시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.226-232
    • /
    • 2016
  • This paper describes the design of a smart three-axis force sensor for measuring forces Fx, Fy and Fz. The smart three-axis force sensor is composed of a three-axis force sensor, a force-measuring device, housing and a cover, where the three-axis force sensor and the force-measuring device are inside the housing and the cover. The measuring device measures forces Fx, Fy and Fz from the three-axis force sensor, and calculates the resultant force using the measured forces, and then sends the resultant force and forces to a PC or other controller using RS-485 communication. The repeatability error and the non-linearity error of the smart three-axis force sensor are less than 0.03%, and the interference error of the sensor is less than 0.87%. It is thought that the sensor can be used for measuring forces in a robot, automatic systems and so on.

고관절 재활로봇의 2축 힘/토크센서 설계 (Design of Two-axis Force/Torque Sensor for Hip Joint Rehabilitation Robot)

  • 김한솔;김갑순
    • 제어로봇시스템학회논문지
    • /
    • 제22권7호
    • /
    • pp.524-529
    • /
    • 2016
  • We describe the design and fabrication of a two-axis force/torque sensor with parallel-plate beams (PPBs) and single beams for measuring force and torque in hip-joint rehabilitation exercise using a lower rehabilitation robot. The two-axis force/torque sensor is composed of an Fz force sensor and a Tz torque sensor, which detect z direction force and z direction torque, respectively. The two-axis force/torque sensor was designed using the FEM (Finite Element Method) and manufactured using strain gages. The characteristics experiment of the two-axis force/torque sensor was carried out. The test results show that the interference error of the two-axis force/torque sensor was less than 0.64% and the repeatability error and the non-linearity of the two-axis force/torque sensor were less than 0.03%. It is thought that the developed two-axis force/torque sensor could be used for a lower rehabilitation robot.

Development of Single-layer Glucose Sensor Using GDH-FAD (Glucose Dehydrogenase Flavin Adenine Dinucleotide)

  • Kye, Ji-Won;Lee, Young-Tae
    • 센서학회지
    • /
    • 제27권3호
    • /
    • pp.156-159
    • /
    • 2018
  • We developed a glucose sensor using glucose dehydrogenase flavin adenine dinucleotide (GDH-FAD). The structure of the three-layer glucose sensor was simplified, in which a single-layer design was used to lower the unit cost, and GDH-FAD was used to increase the measurement reliability. GDH-FAD has less impact on the 20 interfering substances that affect blood glucose measurement, such as galactose and maltose compared to glucose oxidase (GOD), and is not affected by the oxygen saturation; therefore, it is possible to measure both arterial or venous blood and thus less susceptibility to hematocrit. In this study, we developed a single-layer glucose sensor strip with low hematocrit effect using the GDH-FAD enzyme, and measured and evaluated the performance.

Development of a Fine Digital Sun Sensor for STSAT-2

  • Rhee, Sung-Ho;Lyou, Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.260-265
    • /
    • 2012
  • Satellite devices for fine attitude control of the Science & Technology Satellite-2 (STSAT-2). Based on the mission requirements of STSAT-2, the conventional analog-type sun sensors were found to be inadequate, motivating the development of a compact, fast and fine digital sun sensor (FDSS). The FDSS uses a CMOS image sensor and has an accuracy of less than 0.03degrees, an update rate of 5Hz and a weight of less than 800g. A pinhole-type aperture is substituted for the optical lens to minimize its weight. The target process speed is obtained by utilizing the Field Programmable Gate Array (FPGA), which acquires images from the CMOS sensor, and stores and processes the image data. The sensor accuracy is maintained by a rigorous centroid algorithm. This paper describes the FDSS designs, realizations, tests and calibration results.

손목굽힘운동 재활로봇을 위한 3축 힘센서 설계 (Design of a Three-Axis Force Sensor for Wrist Bending-Exercise Rehabilitation Robot)

  • 김갑순
    • 센서학회지
    • /
    • 제22권2호
    • /
    • pp.118-123
    • /
    • 2013
  • Most serious stroke patients have the paralysis of their wrists, and can't use of their hands freely. But their wrists can be recovered by rehabilitation exercise. Recently, professional rehabilitation therapeutists exercise the wrists of stroke patients in hospital. But the wrists of stroke patients have not rehabilitated, because the therapeutists are much less than stroke patients in number. Therefore, the wrist bending-exercise rehabilitation robot that can measure the bending force of the patients' wrists is developed. In this paper, the three-axis force sensor was designed for the wrist bending-exercise rehabilitation robot. As a test results, the interference error of the three-axis force sensor was less than 0.85%. It is thought that the sensor can be used to measure the wrist bending force of the patient.

세 개의 초음파 센서를 사용한 이동 로보트용 월드 맵 구성에 관한 연구 (A Study of World Map Building for Mobile Robot with Tri-Acral Ultrasonic Sensor System)

  • 전형조;김병국
    • 전자공학회논문지B
    • /
    • 제32B권6호
    • /
    • pp.840-848
    • /
    • 1995
  • A new tri-aural ultrasonic sensor system is suggested to build more accurate world maps for mobile robots with less scanning. In ordinary single sensor systems, the inherent beam-width of sonar transmitter causes ambiguity in sensing direction. Dual sensors may be used to discriminate plane and corner with several scans. However, the proposed method uses triple sensors, and achieves more accuracy with less scanning.

  • PDF

Performance Evaluation of an Integrated Starter-Alternator with an IPM Synchronous Machine under Sensor-less Operation

  • Xu, Zhuang;Rahman, M.F.;Wang, G.;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • 제12권1호
    • /
    • pp.49-57
    • /
    • 2012
  • This paper presents performance evaluation of an Integrated Starter-Alternator (ISA) prototype with an Interior Permanent Magnet (IPM) synchronous machine under sensor-less operation. To attain a high starting torque at zero speed and in subsequent extremely low speed range, a hybrid signal injection method is proposed. At higher speed, an improved stator flux observer is used for the stator flux estimation. This observer is able to produce accurately-estimated stator flux linkage for high performance Direct Torque and Flux Control (DTFC) implementation. The sensor-less DTFC IPM synchronous machine drive takes full advantage of the capacity of the power converter and fulfills the control specifications for the ISA. The trajectory control algorithm responds rapidly and in a well behaved manner over a wide range of operating conditions. The experimental results verify the feasibility and advantages of the system.

이동 로봇의 실시간 자세 추정을 위한 센서 시스템의 개발 (Development of a Sensor System for Real-Time Posture Measurement of Mobile Robots)

  • 이상룡;권승만
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2191-2204
    • /
    • 1993
  • A sensor system has been developed to measure the posture(position and orientation) of mobile robots working in industrial environments. The proposed sensor system consists of a CCD camera, retro-reflective landmarks, a strobe unit and an image processing board. The proposed hardware system can be built in economic price compared to commercial vision systems. The system has the capability of measuring the posture of mobile robots within 60 msec when a 386 personal computer is used as the host computer. The experimental results demonstrated a remarkable performance of the proposed sensor system in the posture measurement of mobile robots - the average error in position is less than 3 mm and the average error in orientation is less than 1.5.