• Title/Summary/Keyword: sensor-based primary data

Search Result 49, Processing Time 0.028 seconds

Dual Sink Nodes for Sink Node Failure in Wireless Sensor Networks (무선 센서 네트워크에서의 싱크노드 실패에 대비한 이중 싱크노드 장치)

  • Kim, Dae-Il;Park, Lae-Jeong;Park, Sung-Wook;Lee, Hyung-Bong;Moon, Jung-Ho;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.6
    • /
    • pp.369-376
    • /
    • 2011
  • Since wireless sensor networks generally have the capability of network recovery, malfunction of a few sensor nodes in a sensor network does not cause a crucial problem paralyzing the sensor network. The malfunction of the sink node, however, is critical. If the sink node of a sensor network stops working, the data collected by sensor nodes cannot be delivered to the gateway because no other sensor nodes can take the place of the sink node. This paper proposes a TDMA-based wireless sensor network equipped with dual sink nodes, with a view to preventing data loss in the case of malfunction of a sink node. A secondary sink node, which synchronizes with a primary sink node and receives data from other sensor nodes in normal situations, takes the role of the primary sink node in the case of malfunction of the primary sink, thereby eliminating the possibility of data loss. The effectiveness of the proposed scheme is demonstrated through experiments.

A study of the disaster management model based on USN (USN 기반 재난 관리 모델 연구)

  • Lee, Chang yeol;Kim, Tae hwan
    • Journal of the Society of Disaster Information
    • /
    • v.5 no.1
    • /
    • pp.122-139
    • /
    • 2009
  • USN Middleware plays roles of broker between sensors and applications. It collects sensor data, decides the situation and sends the result to the applications. It is not good to decide the situation from one sensor data, because it may error data or reflect small part of all. In this paper, we propose the disaster management model based on the concept 'group' and 'semantic information' from the sensing data. Group is the primary unit to decide the situation. It consists of several sensors which were installed in the same place and had the same pre-defined condition to act. For example, all fire sensors in the room simultaneously trigger the ring when the same pre-defined temperature is recorded. Then, the all fire sensors are included to the same one sensor group. All operations of the intelligent USN middleware are based on the 'group' unit. Disaster information is the result of the interpretation of the sensing data. based on the 'group', the disaster meaning is processed.

  • PDF

Estimation of Ecosystem Metabolism Using High-frequency DO and Water Temperature Sensor Data in Daecheong Lake (고빈도 DO 및 수온 센서 자료를 이용한 대청호 생태계 신진대사 산정)

  • Kim, Sung-Jin;Chung, Se-Woong;Park, Hyungseok;Oh, Jungkuk;Park, Daeyeon
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.579-590
    • /
    • 2018
  • The lakes' metabolism bears important information for the assessment of the carbon budget due to the accumulation or loss of carbon in the lake as well as the dynamics of the food webs through primary production. A lake-scale metabolism is evaluated by Gross Primary Production (GPP), Ecosystem Respiration (R), and Net Ecosystem Production (NEP), which is the difference between the first two values. Methods for estimating GPP and R are based on the levels carbon and oxygen. Estimation of carbon is expensive because of the use of radioactive materials which requires a high degree of proficiency. The purpose of this study was to estimate Lake Daecheong ecosystem metabolism using high frequency water temperature data and DO measurement sensor, widely utilized in the field of water quality monitoring, and to evaluate the possibility of using the application method. High frequency data was collected at intervals of 10 minutes from September to December 2017 by installing a thermistor chain and a DO sensor in downstream of Daechung Dam. The data was then used to estimate GPP, R and NEP using the R public program LakeMetabolizer, and other metabolism models (mle, ols, kalman, bookkeep). Calculations of gas exchange coefficient methods (cole, crusius, heiskanen, macIntyre, read, soloviev, vachon) were compared. According to the result, Lake Daecheong has some deviation based on the application method, but it was generally estimated that the NEP value is negative and acts as a source of atmospheric carbon in a heterotrophic system. Although the high frequency sensor data used in this study had negative and positive GPP and R values during the physical mixing process, they can be used to monitor real-time metabolic changes in the ecosystem if these problems are solved.

Comparison of Epistemic Characteristics of Using Primary and Secondary Data in Inquiries about Noise Conducted by Elementary School Preservice Teachers: Focusing on the Cases of Science Inquiry Reports (소음에 대한 초등 예비교사들의 탐구에서 나타나는 1차 데이터와 2차 데이터 활용의 인식적 특징 비교 - 과학탐구 보고서 사례를 중심으로 -)

  • Chang, Jina;Na, Jiyeon
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.1
    • /
    • pp.81-94
    • /
    • 2024
  • This study explores and conducts an in-depth comparison of the epistemic characteristics in different data types utilized in the science inquiries of preservice teachers regarding noise as a risk in everyday life. Focusing on primary and secondary data in the context of science inquiries about noise, we examined how these data types differ in science inquires in terms of inquiry design, data collection, and analyses. The findings reveal that sensor-based primary data enable direct measurement and observation of key phenomena. Conversely, secondary data rely on predetermined measurement methods within a public data system. These differences require different epistemic considerations during the inquiry process. Based on these findings, we discuss the educational implications concerning teaching approaches for science inquiries, teacher education for inquiry teaching, and the development of risk response competencies in preparation for the VUCA (Volatility, Uncertainty, Complexity, and Ambiguity) era.

Human Activity Recognition in Smart Homes Based on a Difference of Convex Programming Problem

  • Ghasemi, Vahid;Pouyan, Ali A.;Sharifi, Mohsen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.321-344
    • /
    • 2017
  • Smart homes are the new generation of homes where pervasive computing is employed to make the lives of the residents more convenient. Human activity recognition (HAR) is a fundamental task in these environments. Since critical decisions will be made based on HAR results, accurate recognition of human activities with low uncertainty is of crucial importance. In this paper, a novel HAR method based on a difference of convex programming (DCP) problem is represented, which manages to handle uncertainty. For this purpose, given an input sensor data stream, a primary belief in each activity is calculated for the sensor events. Since the primary beliefs are calculated based on some abstractions, they naturally bear an amount of uncertainty. To mitigate the effect of the uncertainty, a DCP problem is defined and solved to yield secondary beliefs. In this procedure, the uncertainty stemming from a sensor event is alleviated by its neighboring sensor events in the input stream. The final activity inference is based on the secondary beliefs. The proposed method is evaluated using a well-known and publicly available dataset. It is compared to four HAR schemes, which are based on temporal probabilistic graphical models, and a convex optimization-based HAR procedure, as benchmarks. The proposed method outperforms the benchmarks, having an acceptable accuracy of 82.61%, and an average F-measure of 82.3%.

Development of the Driving path Estimation Algorithm for Adaptive Cruise Control System and Advanced Emergency Braking System Using Multi-sensor Fusion (ACC/AEBS 시스템용 센서퓨전을 통한 주행경로 추정 알고리즘)

  • Lee, Dongwoo;Yi, Kyongsu;Lee, Jaewan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.28-33
    • /
    • 2011
  • This paper presents driving path estimation algorithm for adaptive cruise control system and advanced emergency braking system using multi-sensor fusion. Through data collection, yaw rate filtering based road curvature and vision sensor road curvature characteristics are analyzed. Yaw rate filtering based road curvature and vision sensor road curvature are fused into the one curvature by weighting factor which are considering characteristics of each curvature data. The proposed driving path estimation algorithm has been investigated via simulation performed on a vehicle package Carsim and Matlab/Simulink. It has been shown via simulation that the proposed driving path estimation algorithm improves primary target detection rate.

Map-Building for Path-Planning of an Autonomous Mobile Robot Using a Single Ultrasonic Sensor (단일 초음파센서를 이용한 자율 주행 로봇의 경로 계획용 지도작성)

  • Kim, Young-Geun;Kim, HaK-Il
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.12
    • /
    • pp.577-582
    • /
    • 2002
  • The objective of this paper is to produce a weighted graph map for path-planning of an autonomous mobile robot(AMR) based on the measurements from a single ultrasonic sensor, which are acquired when the autonomous mobile robot explores unknown indoor circumstance. The AMR navigates in th unknown space by following the wall and gathers the range data using the ultrasonic sensor, from which the occupancy grid map is constructed by associating the range data with occupancy certainties. Then, the occupancy grid map is converted to a weighted graph map suing morphological image processing and thinning algorithms. the path- planning for autonomous navigation of a mobile robot can be carried out based on the occupancy grid map. These procedures are implemented and tested using an AMR, and primary results are presented in this paper.

A study on the intelligent USN middleware platform based on the group concept (그룹 개념 기반 지능형 USN 미들웨어 플랫폼 연구)

  • Lee, Chang-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1666-1672
    • /
    • 2008
  • USN Middleware plays roles of broker between sensors and applications. It collects sensor data, decides the situation and sends the result to the applications. It is not good to decide the situation from one sensor data, because it may error data or reflect small part of all. In this paper, we propose sensor 'group' concept. Group is the primary unit to decide the situation. It consists of several sensors which were installed in the same place and had the same pre-defined condition to act. For example, all fire sensors in the room simultaneously trigger the ring when the same pre-defined temperature is recorded. Then, the all fire sensors are included to the same one sensor group. All operations of the intelligent USN middleware are based on the 'group' unit. We studied the intelligent rules of USN middleware based on the group.

Review on Energy Efficient Clustering based Routing Protocol

  • Kanu Patel;Hardik Modi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.169-178
    • /
    • 2023
  • Wireless sensor network is wieldy use for IoT application. The sensor node consider as physical device in IoT architecture. This all sensor node are operated with battery so the power consumption is very high during the data communication and low during the sensing the environment. Without proper planning of data communication the network might be dead very early so primary objective of the cluster based routing protocol is to enhance the battery life and run the application for longer time. In this paper we have comprehensive of twenty research paper related with clustering based routing protocol. We have taken basic information, network simulation parameters and performance parameters for the comparison. In particular, we have taken clustering manner, node deployment, scalability, data aggregation, power consumption and implementation cost many more points for the comparison of all 20 protocol. Along with basic information we also consider the network simulation parameters like number of nodes, simulation time, simulator name, initial energy and communication range as well energy consumption, throughput, network lifetime, packet delivery ration, jitter and fault tolerance parameters about the performance parameters. Finally we have summarize the technical aspect and few common parameter must be fulfill or consider for the design energy efficient cluster based routing protocol.

Using Mobile Data Collectors to Enhance Energy Efficiency a nd Reliability in Delay Tolerant Wireless Sensor Networks

  • Yasmine-Derdour, Yasmine-Derdour;Bouabdellah-Kechar, Bouabdellah-Kechar;Faycal-Khelfi, Mohammed
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.275-294
    • /
    • 2016
  • A primary task in wireless sensor networks (WSNs) is data collection. The main objective of this task is to collect sensor readings from sensor fields at predetermined sinks using routing protocols without conducting network processing at intermediate nodes, which have been proved as being inefficient in many research studies using a static sink. The major drawback is that sensor nodes near a data sink are prone to dissipate more energy power than those far away due to their role as relay nodes. Recently, novel WSN architectures based on mobile sinks and mobile relay nodes, which are able to move inside the region of a deployed WSN, which has been developed in most research works related to mobile WSN mainly exploit mobility to reduce and balance energy consumption to enhance communication reliability among sensor nodes. Our main purpose in this paper is to propose a solution to the problem of deploying mobile data collectors for alleviating the high traffic load and resulting bottleneck in a sink's vicinity, which are caused by static approaches. For this reason, several WSNs based on mobile elements have been proposed. We studied two key issues in WSN mobility: the impact of the mobile element (sink or relay nodes) and the impact of the mobility model on WSN based on its performance expressed in terms of energy efficiency and reliability. We conducted an extensive set of simulation experiments. The results obtained reveal that the collection approach based on relay nodes and the mobility model based on stochastic perform better.