• 제목/요약/키워드: sensor noise

검색결과 1,769건 처리시간 0.035초

로봇 구동용 BLDC Motor의 영구자석 오버행에 따른 토크 및 진동.소음 특성 (Characteristics of Torque and Vibration-Noise take into account Permanent Magnet Overhang of BLDC Motor for Robots)

  • 강규홍;김덕현
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권7호
    • /
    • pp.346-352
    • /
    • 2006
  • In Brushless DC Motor, there are Permanent Magnets (PMs) with driving circuit and sensor for detecting to rotor position and rotation speed. In the case of using hall IC sensor which response to magnetic flux, that is required to additional sensor magnet for rotor position detecting. Most of BLDC motor, However, take asymmetrical overhang of PM in rotor instead of additional sensor magnet for operating of hall IC sensor. The asymmetrical overhang of PM occur rotor thrust to z-axis direction that is lead to not only damage of bearing but also intensive noise and vibration. Therefore, the analysis of magnet overhang effect in the side of vibration and drive to hall If sensor is required to precise. In this paper, 2-D Finite Element Method is used to solve precise field computation and thrust of z-axis direction considering asymmetrical magnet overhang. And also the z-axis thrust from the analysis result is compared to experimental result. In conclusion, the purpose of this paper minimize to noise and vibration of BLDC Motor as analyzes to asymmetrical magnet overhang effect.

이동로봇을 위한 위치 및 물체인식용 지능형 센서 제어 시스템 (An intelligent sensor controller of mobile robot for object recognition in an indoor known environment)

  • 정태철;박종석;현웅근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 추계종합학술대회
    • /
    • pp.191-194
    • /
    • 2005
  • 본 논문은 이동로봇을 위한 위치 및 물체인식용 지능형 센서 제어 시스템에 대해 기술한다. 개발된 센서시스템은 저가의 광PSD(Position sensitive detector)를 사용하였다. PSD센서는 저가이고, 가볍다는 장점이 있지만 많은 noise를 갖고 있다. 본 논문에서는 이러한 noise를 효과적으로 제거하기 위해 hardware filter와 software filter를 제안한다. 또한 선분기반 map building을 위해 개선된 Hough transform 알고리즘과 이동로봇의 실내 환경에서의 navigation 알고리즘을 제안한다. 개발된 시스템은 실험을 통해 증명하였다.

  • PDF

직류전동기 브러시 섬락에 따른 기계적 노이즈 신호의 주파수 분포 (Frequency Distribution of Mechanical Noise Signals for Ultrasonic Wave and AE Sensor with Brush Spark of DC Motor)

  • 이상우;김인식;이광식
    • 조명전기설비학회논문지
    • /
    • 제18권2호
    • /
    • pp.36-43
    • /
    • 2004
  • 본 연구에서는 운전중인 직류전동기의 브러시를 임의로 회전하여 브러시와 정류자편에 불꽃을 발생시켰을 때, 초음파센서와 AE센서를 이용하여 각각의 기계적 노이즈 신호를 검출하였으며, 이를 주파수 스펙트럼으로 분석하였다. 또한 직류전동기의 브러시가 중성축에 정상적으로 위치하여 운전하고 있을 때, 초음파센서와 AE센서를 이용하여 각각의 자기적 노이즈 신호를 검출하였으며, 이를 주파수 스펙트럼으로 분석하였다. 그리고 직류전동기의 브러시를 임의로 회전한 경우의 기계적 노이즈 신호 및 브러시가 중성축에 위치한 경우의 자기적 노이즈 신호를 비교ㆍ분석하였다. 실험 결과, 운전중인 직류전동기의 브러시를 회전방향으로 임의로 회전하여 검출한 초음파의 기계적 노이즈 신호는 브러시가 중성축에 정상적으로 위치하여 검출한 초음파의 자기적 노이즈 신호보다 대략 2.5∼3.0배 증가되었다. 또한 운전중인 직류전동기의 브러시를 회전방향으로 임의로 회전하여 불꽃을 발생시켰을 때, AE의 기계적 노이즈 신호를 검출하여 주파수 스펙트럼으로 분석한 결과 주된 주파수 영역이 대략 1.3[MHz]∼l.5[MHz]인 것으로 나타났다

초퍼 연산증폭기와 다수의 정합 트랜지스터를 이용한 수중 전기장 센서용 저잡음 전치 증폭기 설계 (Low-Noise Preamplifier Design for Underwater Electric Field Sensors using Chopper stabilized Operational Amplifiers and Multiple Matched Transistors)

  • 배기웅;양창섭;한승환;정상명;정현주
    • 센서학회지
    • /
    • 제31권2호
    • /
    • pp.120-124
    • /
    • 2022
  • With advancements in underwater stealth technology for naval vessels, new sensor configurations for detecting targets have been attracting increased attention. Latest underwater mines adopt multiple sensor configurations that include electric field sensors to detect targets and to help acquire accurate ignition time. An underwater electric field sensor consists of a pair of electrodes, signal processing unit, and preamplifier. For detecting underwater electric fields, the preamplifier requires low-noise amplification at ultra-low frequency bands. In this paper, the specific requirements for low-noise preamplifiers are discussed along with the experimental results of various setups of matched transistors and chopper stabilized operational amplifiers. The results showed that noise characteristics at ultra-low frequency bands were affected significantly by the voltage noise density of the chopper amplifier and the number of matched transistors used for differential amplification. The fabricated preamplifier was operated within normal design parameters, which was verified by testing its gain, phase, and linearity.

5 차원 변위 측정용 원판형 정전용량 센서 (A Disk-type Capacitive Sensor for Five-dimensional Motion Measurements)

  • 안형준;박정호;엄창용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.655-662
    • /
    • 2007
  • This paper presents a disk-type capacitive sensor for simultaneous measurement of five-dimensional motions of a target. The sensor can be manufactured with a printed circuit board (PCB) such that the sensor can be integrated with its electronics in a single PCB board, whereby the manufacturing costs is considerably reduced. The sensor is optimally designed through an error analysis of possible mechanical errors. Furthermore, the sensor can correct the horizontal motion measurement errors due to the sensor installation tilting error. A proto-type PCB sensor, electronics and a test rig were built, and the effectiveness of the developed sensor was proved through experiments.

  • PDF

A Low-Power Portable ECG Touch Sensor with Two Dry Metal Contact Electrodes

  • Yan, Long;Yoo, Hoi-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제10권4호
    • /
    • pp.300-308
    • /
    • 2010
  • This paper describes the development of a low-power electrocardiogram (ECG) touch sensor intended for the use with two dry metal electrodes. An equivalent ECG extraction circuit model encountered in a ground-free two-electrode configuration is investigated for an optimal sensor read-out circuit design criteria. From the equivalent circuit model, (1) maximum sensor resolution is derived based on the electrode's background thermal noise, which originates from high electrode-skin contact impedance, together with the input referred noise of instrumentation amplifier (IA), (2) 60 Hz electrostatic coupling from mains and motion artifact are also considered to determine minimum requirement of common mode rejection ratio (CMRR) and input impedance of IA. A dedicated ECG read-out front end incorporating chopping scheme is introduced to provide an input referred circuit noise of 1.3 ${\mu}V_{rms}$ over 0.5 Hz ~ 200 Hz, CMRR of IA > 100 dB, sensor resolution of 7 bits, and dissipating only 36 ${\mu}W$. Together with 8 bits synchronous successive approximation register (SAR) ADC, the sensor IC chip is implemented in 0.18 ${\mu}m$ CMOS technology and integrated on a 5 cm $\times$ 8 cm PCB with two copper patterned electrodes. With the help of proposed touch sensor, ECG signal containing QRS complex and P, T waves are successfully extracted by simply touching the electrodes with two thumbs.

회전각 검출용 3축 수직 Hall 센서 (Three Branches Vertical Hall Sensor for Rotation Angle Detection)

  • 이지연;남태철
    • 한국전기전자재료학회논문지
    • /
    • 제18권9호
    • /
    • pp.840-845
    • /
    • 2005
  • A three branches vortical Hall sensor for detecting rotation angle of brushless motor has fabricated. The sensor is constructed three branches of $150{\mu}m$ width and $300{\mu}m$ distance from central electrode to Hall electrode. Each branch has one Hall output and one Hall input. The central electrode acts as common driving input. According to rotation angle change of brushless motor, sensor gives three position signals phase shifted by $120^{\circ}$. The sensitivity of sensor is 200V/A$\cdot$T at magnetic field of 0.1 T and constant driving current of 1mA. It has also showed three sine waves of Hall output voltages with $120^{\circ}$ phase over one motor rotation. The noise can limit sensor's resolution. We have measured sensor's noise characteristics. The detectable minimum magnetic field is $20{\mu}T$ at driving current 1mA, measured frequency 1 kHz and bandwidth$({\Delta}f)$ of 1Hz.

개인 항법 시스템을 위한 센서 위치와 보폭 추정 알고리즘 (Estimation of the Sensor Location and the Step for Personal Navigation System)

  • 김태은;이호원;좌동경;홍석교
    • 전기학회논문지
    • /
    • 제59권11호
    • /
    • pp.2058-2065
    • /
    • 2010
  • This paper presents the sensor location and step estimation algorithm for personal navigation system (PNS). PNS has the disadvantage in that the position of the sensor must be fixed on a human body. Three-axis acceleration sensor is used to solve the disadvantage and to consider the real situation. We simplify the measurement data by using the band pass filter, witch It has the advantage in the detection of characteristic point. Through the detected characteristic points, it is possible to setup the parameter for the pattern detection. Depending on the sensor location, the parameters have the different type of noise covariance. Particularly, when the position of the sensor is changed, the impulse noise shows up. Considering the noise, we apply the recursive least square algorithm using the variable forgetting factors, which can classify the sensor location based on the estimated parameters. We performed the experiment for the verification of the proposed algorithm in the various environments. Through the experimental results, the effectiveness of the proposed method is verified.

센서 네트워크를 위한 2.4 GHz 저잡음 커플드 링 발진기 (A 2.4 GHz Low-Noise Coupled Ring Oscillator with Quadrature Output for Sensor Networks)

  • 심재훈
    • 센서학회지
    • /
    • 제28권2호
    • /
    • pp.121-126
    • /
    • 2019
  • The voltage-controlled oscillator is one of the fundamental building blocks that determine the signal quality and power consumption in RF transceivers for wireless sensor networks. Ring oscillators are attractive owing to their small form factor and multi-phase capability despite the relatively poor phase noise performance in comparison with LC oscillators. The phase noise of a ring oscillator can be improved by using a coupled structure that works at a lower frequency. This paper introduces a 2.4 GHz low-noise ring oscillator that consists of two 3-stage coupled ring oscillators. Each sub-oscillator operates at 800 MHz, and the multi-phase signals are combined to generate a 2.4 GHz quadrature output. The voltage-controlled ring oscillator designed in a 65-nm standard CMOS technology has a tuning range of 800 MHz and exhibits the phase noise of -104 dBc/Hz at 1 MHz offset. The power consumption is 13.3 mW from a 1.2 V supply voltage.