• Title/Summary/Keyword: sensor node gateway

Search Result 82, Processing Time 0.026 seconds

The IoT Implementation Technology for e-Health Device Connection (e-Health장비 연결을 위한 IoT구현기술)

  • Yoo, Jinho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.5
    • /
    • pp.394-399
    • /
    • 2015
  • This paper is a study related to connecting to medical device in IoT environment for e-Health Implementation. The implementation environment of this paper consists of sensing device node, gateway and its server. The information from medical devices on sensor node is transferred to gateway. The gateway transfers the information from their devices into the server and the server saves their transferred information. The medical information from medical devices is ready to use in making medical decision which is saved in database. In this paper, we connected the gateway to the commercial sensor node for implementing gateway functions. We studied and implemented how their network entities communicate each other.

CoAP-based Time Synchronization Algorithm in Sensor Network (센서 네트워크에서의 CoAP 기반 시각 동기화 기법)

  • Kim, Nac-Woo;Son, Seung-Chul;Park, Il-Kyun;Yu, Hong-Yeon;Lee, Byung-Tak
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.39-47
    • /
    • 2015
  • In this paper, we propose a new time synchronization algorithm using CoAP(constrained-application protocol) in sensor network environment, which handles a technique that synchronizes an explicit timestamp between sensor nodes not including an additional module for time-setting and sensor node gateway linked to internet time server. CoAP is a standard protocol for sensor data communication among sensor nodes and sensor node gateway to be built much less memory and power supply in constrained network surroundings including serious network jitter, packet losses, etc. We have supplied an exact time synchronization implementation among small and cheap IP-based sensor nodes or non-IP based sensor nodes and sensor node gateway in sensor network using CoAP message header's option extension. On behalf of conventional network time synchronization method, as our approach uses an exclusive protocol 'CoAP' in sensor network, it is not to become an additional burden for synchronization service to sensor nodes or sensor node gateway. This method has an average error about 2ms comparing to NTP service and offers a low-cost and robust network time synchronization algorithm.

A study on the implementation and performance evaluation of low-power ZigBee sensor in the M2M gateway system (M2M Gateway 시스템을 위한 저전력 지그비 센서 구현 및 성능평가에 관한 연구)

  • Jeon, Joong-Sung;Kim, Nam-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.629-634
    • /
    • 2016
  • This paper describes the implementation of a ZigBee sensor node that can be utilized as a multiband and machine to machine (M2M) communication gateway. The IEEE 802.15.4-2003 standard was used as the wireless network frequency band. Ember's Type EM357 SoC was used as the transmission and reception device to perform the communication function, and it was also used for both the main M2M gateway and the sensor node. For the implementation of the operating protocol, EmberZNet Stack 4.5.4 from the Ember Corporation was used. The measurement of the reception sensitivity in the receiving module and the actual output signal from the reference were obtained from the transmission of a packet, and the packet included the M2M gateway within the attached ZigBee sensor. The packet error rate was measured as 0% with a -98 dBm reception sensitivity at the ZigBee frequency. In addition, excellent current characteristics of the ZigBee modules were shown by the implementation of the low-power circuit.

Performance Evaluation of a Smart CoAP Gateway for Remote Home Safety Services

  • Kim, Hyun-Sik;Seo, Jong-Su;Seo, Jeongwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3079-3089
    • /
    • 2015
  • In this paper, a smart constrained application protocol (CoAP)-based gateway with a border router is proposed for home safety services to remotely monitor the trespass, fire, and indoor air quality. The smart CoAP gateway controls a home safety sensor node with a pyroelectric infrared motion sensor, a fire sensor, a humidity and temperature sensor, and a non-dispersive infrared CO2 sensor and gathers sensing data from them. In addition, it can convert physical sensing data into understandable information and perform packet conversion as a border router for seamless connection between a low-power wireless personal area network (6LoWPAN) and the Internet (IPv6). Implementation and laboratory test results verify the feasibility of the smart CoAP gateway which especially can provide about 97.20% data throughput.

Cooperative Synchronization and Channel Estimation in Wireless Sensor Networks

  • Oh Mi-Kyung;Ma Xiaoli;Giannakis Georgios B;Park Dong-Jo
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.284-293
    • /
    • 2005
  • A critical issue in applications involving networks of wireless sensors is their ability to synchronize, and mitigate the fading propagation channel effects. Especially when distributed 'slave' sensors (nodes) reach-back to communicate with the 'master' sensor (gateway), low power cooperative schemes are well motivated. Viewing each node as an antenna element in a multi-input multi-output (MIMO) multi-antenna system, we design pilot patterns to estimate the multiple carrier frequency offsets (CFO), and the multiple channels corresponding to each node-gateway link. Our novel pilot scheme consists of non-zero pilot symbols along with zeros, which separate nodes in a time division multiple access (TDMA) fashion, and lead to low complexity schemes because CFO and channel estimators per node are decoupled. The resulting training algorithm is not only suitable for wireless sensor networks, but also for synchronization and channel estimation of single- and multi-carrier MIMO systems. We investigate the performance of our estimators analytically, and with simulations.

Design and Implementation of Wireless RFID Assistant System for Activity Monitoring of Elderly Living Alone (독거노인 활동 모니터링을 위한 보조 시스템의 설계 및 구현)

  • Jung, Kyung-Kwon;Lee, Yong-Gu;Kim, Yong-Joong
    • 전자공학회논문지 IE
    • /
    • v.46 no.3
    • /
    • pp.55-61
    • /
    • 2009
  • This paper describes an assistant system for elders who live alone. The developed system is composed of a wearable RFID system, a gateway system, and server system. The wearable RFID system is installed in glove. The wearable RFID system can be considered as a wireless sensor network which has a sink node and sensor node with a RFID reader. The sensor node can read RFID tags on the various objects used in daily living such as furniture, medicines, sugar and salt bottles, and ok. The sensor node transmits wireless packets to the sink node. The sink node sends the received packet immediately to a server system via a gateway system. The gateway provides users with audio-visual information of objects. The server system is composed of a database server and a web server. The data from each wearable RFID system is collected into a database, and then the data are processed to visualize the measurement of daily living activities of users. The processed data can be provided for someone who wants to know about user's daily living patterns in house such as family, caregivers, and medical crew.

A Study on Yeong-san River Ecological Environment Monitoring based on IoT (IoT 기반의 영산강 생태환경 감시망 연구)

  • Nam, Kang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.203-210
    • /
    • 2015
  • The ecological environment monitoring system configured with Sensor Node, Gateway, Service Platform, and Web Browser. In this paper, we designed gateway resource tree and service function to do handling in the ecological environment monitoring service. Gateway Service Function based on oneM2M Common Service Function, Gateway Resource Tree configured with Application Part handling Sensor Data and Gateway link handling. lastly Device Registration, Sensing, Control, Profile Management.

Dual Sink Nodes for Sink Node Failure in Wireless Sensor Networks (무선 센서 네트워크에서의 싱크노드 실패에 대비한 이중 싱크노드 장치)

  • Kim, Dae-Il;Park, Lae-Jeong;Park, Sung-Wook;Lee, Hyung-Bong;Moon, Jung-Ho;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.6
    • /
    • pp.369-376
    • /
    • 2011
  • Since wireless sensor networks generally have the capability of network recovery, malfunction of a few sensor nodes in a sensor network does not cause a crucial problem paralyzing the sensor network. The malfunction of the sink node, however, is critical. If the sink node of a sensor network stops working, the data collected by sensor nodes cannot be delivered to the gateway because no other sensor nodes can take the place of the sink node. This paper proposes a TDMA-based wireless sensor network equipped with dual sink nodes, with a view to preventing data loss in the case of malfunction of a sink node. A secondary sink node, which synchronizes with a primary sink node and receives data from other sensor nodes in normal situations, takes the role of the primary sink node in the case of malfunction of the primary sink, thereby eliminating the possibility of data loss. The effectiveness of the proposed scheme is demonstrated through experiments.

An Implementation of Mobile Gateway Based on Android Smartphone (안드로이드 스마트폰 기반의 모바일 게이트웨이 구현)

  • Lee, Donggeon;Lim, Jae-Hyun
    • Journal of Digital Convergence
    • /
    • v.12 no.1
    • /
    • pp.333-338
    • /
    • 2014
  • Zigbee is a wireless communication technology optimized for WSN (Wireless Sensor Network) environment. A WSN gateway is used for node control and data transmission. However, a fixed-type gateway can restrict the flexibility of the WSN environment. A smartphone-mounted high-performance processor and Android OS can be easily used in a mobile WSN gateway. In this paper, we proposed a mobile WSN gateway based on Android smartphones. In the proposed system, a Zigbee sensor module is connected with a smartphone via USB (Universal Serial Bus) port. We also implemented an Android application for the mobile WSN gateway.

Design of Border Surveillance and Control System Based on Wireless Sensor Network (WSN 기반 국경 감시 및 제어 시스템 설계)

  • Hwang, Bo Ram;An, Sun Shin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.1
    • /
    • pp.11-14
    • /
    • 2015
  • WSN (Wireless Sensor Network) based on low-power is one of the core technologies in the ubiquitous society. In this paper, we present a border surveillance and control system in WSN environment. The system consists of static sensor node, mobile sensor node, static gateway, mobile gateway, server and mobile application. Mobile applications are divided into user mode and manager mode. So users monitor border surveillance through mobile phone and get information of border network environment without time and space constraints. In manager mode, for the flexible operation of nodes, manager can update to the software remotely and adjust the position of the mobile node. And also we implement a suitable multi-hop routing protocol for scalable low-power sensor nodes and confirm that the system operates well in WSN environment.