• Title/Summary/Keyword: sensor network simulator

Search Result 117, Processing Time 0.025 seconds

Design and Implementation of Interface Module between Network Framework for Sensor Network Application and Co-Simulator (센서네트워크 어플리케이션을 위한 네트워크 프레임워크와 통합시뮬레이터 간의 인터페이스 구현 및 설계)

  • Lee, Jeong-Joo;Koak, Dong-Eun;Seo, Min-Suk;Park, Hyun-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.515-524
    • /
    • 2013
  • For the development of reliable software, Software testing is the most important. Recently small changes of the software according to the importance of regression testing is growing. To verify Application of a large number of nodes, Network simulator environment is required. This paper proposed interface module between network framework for sensor network application and co-simulator to unit test sensor network application. To conclude, developer can focus on sensor network application implementation only, so the improved integrated simulator contributes to increase development productivity.

Sensor Network Simulator for Ubiquitous Application Development (유비쿼터스 응용 개발을 위한 센서 네트워크 시뮬레이터)

  • Kim, Bang-Hyun;Kim, Jong-Hyun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.6
    • /
    • pp.358-370
    • /
    • 2007
  • Software simulations have been widely used for the design and application development of a wireless sensor network that is an infrastructure of ubiquitous computing. In this study, we develop a sensor network simulator that can verify the behavior of sensor network applications, estimate execution time and power consumption, and simulate a large-scale sensor network. To implement the simulator, we use an instruction-level parallel discrete-event simulation method. Instruction-level simulation uses executable images loaded into a real sensor board as workload, such that it results in the high degree of details. Parallel simulation makes simulation of a large-scale sensor network possible by distributing workload into multiple computers. The simulator can predict the amount of power consumption based on operating time of modules in a sensor node and counting the number of executed instructions by kind. Also it can simulate ubiquitous applications with various scenarios and debug programs. Instruction traces used as workload for simulations are executable images produced by the cross-compiler for ATmega128L microcontroller.

TeloSIM: Instruction-level Sensor Network Simulator for Telos Sensor Node (TeloSIM: Telos 형 센서노드를 위한 명령어 수준 센서네트워크 시뮬레이터)

  • Joe, Hyun-Woo;Kim, Hyung-Shin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1021-1030
    • /
    • 2010
  • In the sensor network, many tiny nodes construct Ad-Hoc network using wireless interface. As this type of system consists of thousands of nodes, managing each sensor node in real world after deploying them is very difficult. In order to install the sensor network successfully, it is necessary to verify its software using a simulator beforehand. In fact Sensor network simulators require high fidelity and timing accuracy to be used as a design, implementation, and evaluation tool of wireless sensor networks. Cycle-accurate, instruction-level simulation is the known solution for those purposes. In this paper, we developed an instruction-level sensor network simulator for Telos sensor node as named TeloSlM. It consists of MSP430 and CC2420. Recently, Telos is the most popular mote because MSP430 can consume the minimum energy in recent motes and CC2420 can support Zigbee. So that TeloSlM can provide the easy way for the developers to verify software. It is cycle-accurate in instruction-level simulator that is indispensable for OS and the specific functions and can simulate scalable sensor network at the same time. In addition, TeloSlM provides the GUI Tool to show result easily.

Log-based Wireless Sensor Network Simulator (로그 기반 무선 센서 네트워크 시뮬레이터)

  • Cho, Min-Hee;Son, Cheol-Su;Kim, Won-Jung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.845-848
    • /
    • 2008
  • In case of application test in wireless sensor network, there are many difficulties in power supplying to wireless sensor node, installing and deploying of sensor nodes, maintaining and debugging. For efficient development and maintenance of wireless sensor network-based application, a simulator is essentially needed. However, the existing wireless sensor network simulators are focused to distribution of MAC address, routing, power management, it is not suitable to test the function of application in host which processes message through sink node. In this paper, we designed and implemented a log-based simulator for application running in host connected sink node.

  • PDF

Development of Sensor Network Simulator for Estimating Power Consumption and Execution Time (전력소모량 및 실행시간 추정이 가능한 센서 네트워크 시뮬레이터의 개발)

  • Kim, Bang-Hyun;Kim, Tae-Kyu;Jung, Yong-Doc;Kim, Jong-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.1
    • /
    • pp.35-42
    • /
    • 2006
  • Sensor network, that is an infrastructure of ubiquitous computing, consists of a number of sensor nodes of which hardware is very small. The network topology and routing scheme of the network should be determined according to its purpose, and its hardware and software may have to be changed as needed from time to time. Thus, the sensor network simulator being capable of verifying its behavior and estimating performance is required for better design. Sensor network simulators currently existing have been developed for specific hardwares or operating systems, so that they can only be used for such systems and do not provide any means to estimate the amount of power consumption and program execution time which are major issues for system design. In this study, we develop the sensor network simulator that can be used to design and verify various sensor networks without regarding to types of applications or operating systems, and also has the capability of predicting the amount of power consumption and program execution time. For this purpose, the simulator is developed by using machine instruction-level discrete-event simulation scheme. As a result, the simulator can be used to analyze program execution timings and related system behaviors in the actual sensor nodes in detail. Instruction traces used as workload for simulations are executable images produced by the cross-compiler for ATmega128L microcontroller.

  • PDF

Tree-based Deployment Algorithm in Mobile Sensor Networks (이동 센서 네트워크에서 트리 기반의 배치 알고리즘)

  • Moon, Chong-Chun;Park, Jae-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1138-1143
    • /
    • 2006
  • Sensor deployment is an important issue in the mobile wireless sensor network. In this paper, we propose a deployment algorithm for mobile sensor network to spread out mobile sensor nodes widely as well as regularly. Since the proposed algorithm uses tree topology in deploying the sensor nodes, calculating power as well as spreading speed can be reduced compare to other deployment algorithms. The performance of the proposed algorithm is simulated using NS-2 simulator and demonstrated.

Performance Analysis of Hierarchical Routing Protocols for Sensor Network (센서 네트워크를 위한 계층적 라우팅 프로토콜의 성능 분석)

  • Seo, Byung-Suk;Yoon, Sang-Hyun;Kim, Jong-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.4
    • /
    • pp.47-56
    • /
    • 2012
  • In this study, we use a parallel simulator PASENS(Parallel SEnsor Network Simulator) to predict power consumption and data reception rate of the hierarchical routing protocols for sensor network - LEACH (Low-Energy Adaptive Clustering Hierarchy), TL-LEACH (Two Level Low-Energy Adaptive Clustering Hierarchy), M-LEACH (Multi hop Low-Energy Adaptive Clustering Hierarchy) and LEACH-C (LEACH-Centralized). According to simulation results, M-LEACH routing protocol shows the highest data reception rate for the wider area, since more sensor nodes are involved in the data transmission. And LEACH-C routing protocol, where the sink node considers the entire node's residual energy and location to determine the cluster head, results in the most efficient energy consumption and in the narrow area needed long life of sensor network.

Sensor Deployment Simulator for Designing Sensor Fields (센서 필드 설계를 위한 배치 시뮬레이터)

  • Kwon, Oh-Heum;Song, Ha-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.3
    • /
    • pp.354-365
    • /
    • 2013
  • Node deployment is one of the important problems in achieving good quality of service in wireless sensor network. The purpose of this paper is to develop an interactive system that supports user's decision makings in designing sensor fields. The system provides grid-based initial deployment algorithm supporting three types of node deployment pattern, area-fill, path-cover, and barrier-cover deployment pattern. After initial deployment, an iterative refinement algorithm can be applied, which takes care of the irregularity of the deployment area and the heterogeneity of sensors. The proposed system helps users to effectively deploy nodes in the sensor field, analyse the detection performance of the deployment, and perform network simulations. The developed system can be utilized as a part of the development environment of the surveillance sensor network system.

Design of Operation-Level Simulator for Wireless Sensor Network (무선센서네트워크용 동작레벨 시뮬레이터 설계)

  • Lee, Doo-Wan;Kim, Min-Je;Lee, Kang-Whan;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.733-739
    • /
    • 2011
  • Recently, a lots of research proposals and results on mobile sensor network are actively announced. The most of such works are based on general-purposed network simulators such as ns-2, mathlab, etc. But, It is not easy to model and simulate the detail activities of each sensor node, data deliveries between them, and its cost such as power consumption and resource utilization, so that the simulation results of those simulators show the limited aspects of overall networks features or performance metrics. In this paper proposed, power consumption of each node, performance, mobility, and location information in operation-level of the network that can simulate a wireless sensor network simulator platform. Because the network routing algorithm analysis of being developed in an existing becomes available, the proposed simulator can usability in the new network routing algorithm development.

COSMOS: A Middleware for Integrated Data Processing over Heterogeneous Sensor Networks

  • Kim, Ma-Rie;Lee, Jun-Wook;Lee, Yong-Joon;Ryou, Jae-Cheol
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.696-706
    • /
    • 2008
  • With the increasing need for intelligent environment monitoring applications and the decreasing cost of manufacturing sensor devices, it is likely that a wide variety of sensor networks will be deployed in the near future. In this environment, the way to access heterogeneous sensor networks and the way to integrate various sensor data are very important. This paper proposes the common system for middleware of sensor networks (COSMOS), which provides integrated data processing over multiple heterogeneous sensor networks based on sensor network abstraction called the sensor network common interface. Specifically, this paper introduces the sensor network common interface which defines a standardized communication protocol and message formats used between the COSMOS and sensor networks.

  • PDF