• 제목/요약/키워드: sensor data

검색결과 7,260건 처리시간 0.038초

Design an Indexing Structure System Based on Apache Hadoop in Wireless Sensor Network

  • Keo, Kongkea;Chung, Yeongjee
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.45-48
    • /
    • 2013
  • In this paper, we proposed an Indexing Structure System (ISS) based on Apache Hadoop in Wireless Sensor Network (WSN). Nowadays sensors data continuously keep growing that need to control. Data constantly update in order to provide the newest information to users. While data keep growing, data retrieving and storing are face some challenges. So by using the ISS, we can maximize processing quality and minimize data retrieving time. In order to design ISS, Indexing Types have to be defined depend on each sensor type. After identifying, each sensor goes through the Indexing Structure Processing (ISP) in order to be indexed. After ISP, indexed data are streaming and storing in Hadoop Distributed File System (HDFS) across a number of separate machines. Indexed data are split and run by MapReduce tasks. Data are sorted and grouped depend on sensor data object categories. Thus, while users send the requests, all the queries will be filter from sensor data object and managing the task by MapReduce processing framework.

COSMOS: A Middleware for Integrated Data Processing over Heterogeneous Sensor Networks

  • Kim, Ma-Rie;Lee, Jun-Wook;Lee, Yong-Joon;Ryou, Jae-Cheol
    • ETRI Journal
    • /
    • 제30권5호
    • /
    • pp.696-706
    • /
    • 2008
  • With the increasing need for intelligent environment monitoring applications and the decreasing cost of manufacturing sensor devices, it is likely that a wide variety of sensor networks will be deployed in the near future. In this environment, the way to access heterogeneous sensor networks and the way to integrate various sensor data are very important. This paper proposes the common system for middleware of sensor networks (COSMOS), which provides integrated data processing over multiple heterogeneous sensor networks based on sensor network abstraction called the sensor network common interface. Specifically, this paper introduces the sensor network common interface which defines a standardized communication protocol and message formats used between the COSMOS and sensor networks.

  • PDF

A FRAMEWORK FOR QUERY PROCESSING OVER HETEROGENEOUS LARGE SCALE SENSOR NETWORKS

  • Lee, Chung-Ho;Kim, Min-Soo;Lee, Yong-Joon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.101-104
    • /
    • 2007
  • Efficient Query processing and optimization are critical for reducing network traffic and decreasing latency of query when accessing and manipulating sensor data of large-scale sensor networks. Currently it has been studied in sensor database projects. These works have mainly focused on in-network query processing for sensor networks and assumes homogeneous sensor networks, where each sensor network has same hardware and software configuration. In this paper, we present a framework for efficient query processing over heterogeneous sensor networks. Our proposed framework introduces query processing paradigm considering two heterogeneous characteristics of sensor networks: (1) data dissemination approach such as push, pull, and hybrid; (2) query processing capability of sensor networks if they may support in-network aggregation, spatial, periodic and conditional operators. Additionally, we propose multi-query optimization strategies supporting cross-translation between data acquisition query and data stream query to minimize total cost of multiple queries. It has been implemented in WSN middleware, COSMOS, developed by ETRI.

  • PDF

먼지 환경의 무인차량 운용을 위한 장애물 탐지 기법 (A Method of Obstacle Detection in the Dust Environment for Unmanned Ground Vehicle)

  • 최덕선;안성용;박용운
    • 한국군사과학기술학회지
    • /
    • 제13권6호
    • /
    • pp.1006-1012
    • /
    • 2010
  • For the autonomous navigation of an unmanned ground vehicle in the rough terrain and combat, the dust environment should necessarily be overcome. Therefore, we propose a robust obstacle detection methodology using laser range sensor and radar. Laser range sensor has a good angle and distance accuracy, however, it has a weakness in the dust environment. On the other hand, radar has not better the angle and distance accuracy than laser range sensor, it has a robustness in the dust environment. Using these characteristics of laser range sensor and radar, we use laser range sensor as a main sensor for normal times and radar as a assist sensor for the dust environment. For fusion of laser range sensor and radar information, the angle and distance data of the laser range sensor and radar are separately transformed to the angle and distance data of virtual range sensor which is located in the center of the vehicle. Through distance comparison of laser range sensor and radar in the same angle, the distance data of a fused virtual range sensor are changed to the distance data of the laser range sensor, if the distance of laser range sensor and radar are similar. In the other case, the distance data of the fused virtual range sensor are changed to the distance data of the radar. The suggested methodology is verified by real experiment.

Kriging Regressive Deep Belief WSN-Assisted IoT for Stable Routing and Energy Conserved Data Transmission

  • Muthulakshmi, L.;Banumathi, A.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권7호
    • /
    • pp.91-102
    • /
    • 2022
  • With the evolution of wireless sensor network (WSN) technology, the routing policy has foremost importance in the Internet of Things (IoT). A systematic routing policy is one of the primary mechanics to make certain the precise and robust transmission of wireless sensor networks in an energy-efficient manner. In an IoT environment, WSN is utilized for controlling services concerning data like, data gathering, sensing and transmission. With the advantages of IoT potentialities, the traditional routing in a WSN are augmented with decision-making in an energy efficient manner to concur finer optimization. In this paper, we study how to combine IoT-based deep learning classifier with routing called, Kriging Regressive Deep Belief Neural Learning (KR-DBNL) to propose an efficient data packet routing to cope with scalability issues and therefore ensure robust data packet transmission. The KR-DBNL method includes four layers, namely input layer, two hidden layers and one output layer for performing data transmission between source and destination sensor node. Initially, the KR-DBNL method acquires the patient data from different location. Followed by which, the input layer transmits sensor nodes to first hidden layer where analysis of energy consumption, bandwidth consumption and light intensity are made using kriging regression function to perform classification. According to classified results, sensor nodes are classified into higher performance and lower performance sensor nodes. The higher performance sensor nodes are then transmitted to second hidden layer. Here high performance sensor nodes neighbouring sensor with higher signal strength and frequency are selected and sent to the output layer where the actual data packet transmission is performed. Experimental evaluation is carried out on factors such as energy consumption, packet delivery ratio, packet loss rate and end-to-end delay with respect to number of patient data packets and sensor nodes.

The Design of mBodyCloud System for Sensor Information Monitoring in the Mobile Cloud Environment

  • Park, Sungbin;Moon, Seok-Jae;Lee, Jong-Yong;Jung, Kye-Dong
    • International journal of advanced smart convergence
    • /
    • 제5권1호
    • /
    • pp.1-7
    • /
    • 2016
  • Recently, introduced a cloud computing technology to the IT industry, smart phones, it has become possible connection between mobility terminal such as a tablet PC. For dissemination and popularization of movable wireless terminal, the same operation have focused on a viable mobile cloud in various terminal. Also, it evolved Wireless Sensor Network(WSN) technology, utilizing a Body Sensor Network(BSN), which research is underway to build large Ubiquitous Sensor Network(USN). BSN is based on large-scale sensor networks, it integrates the state information of the patient's body, it has been the need to build a managed system. Also, by transferring the acquired sensor information to HIS(Hospital Information System), there is a need to frequently monitor the condition of the patient. Therefore, In this paper, possible sensor information exchange between terminals in a mobile cloud environment, by integrating the data obtained by the body sensor HIS and interoperable data DBaaS (DataBase as a Service) it will provide a base of mBodyCloud System. Therefore, to provide an integrated protocol to include the sensor data to a standard HL7(Health Level7) medical information data.

TLF: Two-level Filter for Querying Extreme Values in Sensor Networks

  • Meng, Min;Yang, Jie;Niu, Yu;Lee, Young-Koo;Jeong, Byeong-Soo;Lee, Sung-Young
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.870-872
    • /
    • 2007
  • Sensor networks have been widely applied for data collection. Due to the energy limitation of the sensor nodes and the most energy consuming data transmission, we should allocate as much work as possible to the sensors, such as data compression and aggregation, to reduce data transmission and save energy. Querying extreme values is a general query type in wireless sensor networks. In this paper, we propose a novel querying method called Two-Level Filter (TLF) for querying extreme values in wireless sensor networks. We first divide the whole sensor network into domains using the Distributed Data Aggregation Model (DDAM). The sensor nodes report their data to the cluster heads using push method. The advantages of two-level filter lie in two aspects. When querying extreme values, the number of pull operations has the lower boundary. And the query results are less affected by the topology changes of the wireless sensor network. Through this method, the sensors preprocess the data to share the burden of the base station and it combines push and pull to be more energy efficient.

  • PDF

Data Correlation-Based Clustering Algorithm in Wireless Sensor Networks

  • Yeo, Myung-Ho;Seo, Dong-Min;Yoo, Jae-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제3권3호
    • /
    • pp.331-343
    • /
    • 2009
  • Many types of sensor data exhibit strong correlation in both space and time. Both temporal and spatial suppressions provide opportunities for reducing the energy cost of sensor data collection. Unfortunately, existing clustering algorithms are difficult to utilize the spatial or temporal opportunities, because they just organize clusters based on the distribution of sensor nodes or the network topology but not on the correlation of sensor data. In this paper, we propose a novel clustering algorithm based on the correlation of sensor data. We modify the advertisement sub-phase and TDMA schedule scheme to organize clusters by adjacent sensor nodes which have similar readings. Also, we propose a spatio-temporal suppression scheme for our clustering algorithm. In order to show the superiority of our clustering algorithm, we compare it with the existing suppression algorithms in terms of the lifetime of the sensor network and the size of data which have been collected in the base station. As a result, our experimental results show that the size of data is reduced and the whole network lifetime is prolonged.

ICT 기반 환경 모니터링 센서 데이터의 신뢰성 검증을 위한 플랫폼 (Platform of ICT-based environmental monitoring sensor data for verifying the reliability)

  • 채민아;조재혁
    • Journal of Platform Technology
    • /
    • 제9권1호
    • /
    • pp.23-31
    • /
    • 2021
  • 최근 몇 년간 국내 산업에서 센서 오작동과 환경 모니터링의 부재로 인한 유해가스 방출 등으로 인명피해가 발생하고 이러한 유해 물질이 감지할 수 있는 환경 센서의 평가는 내구성 시험 및 위해성 검사 위주이기 때문에 센서의 측정 데이터에 대한 신뢰성 검증에는 한계가 있다. 본 플랫폼은 환경센서의 신뢰성을 검증하고 수집한 데이터를 통해 환경 분석을 위해 주요한 10종의 물질에 대해 측정하는 센서 보드와 각 센서의 성능 검증 체계를 설계하였다. 데이터를 수집하기 위해 센서 보드로 수집된 데이터를 LoRa 통신을 이용하여 데이터 신뢰성 평가 및 검증을 위한 서버로 전달되고 전달된 데이터를 모니터링 하기 위한 센서 데이터 플랫폼의 프로토타입을 제작하였다. 그리고 수집한 데이터를 이용하여 machine learning 기법을 통해 대기 환경을 분석하고 예측한다.

데이타 중심 저장 방식의 센서 네트워크를 위한 비균등 영역 분할 기법 (A Non-Equal Region Split Method for Data-Centric Storage in Sensor Networks)

  • 강홍구;전상훈;홍동숙;한기준
    • 한국공간정보시스템학회 논문지
    • /
    • 제8권3호
    • /
    • pp.105-115
    • /
    • 2006
  • 데이타 중심 저장(Data-Centric Storage: DCS) 방식의 센서 네트워크는 같은 값의 데이타를 같은 노드에 저장하기 때문에 센서 네트워크가 확장되거나 같은 값의 데이타가 빈번하게 발생하면 특정 센서 노드에 저장 부하가 집중되어 에너지 효율성이 나빠지는 문제가 발생한다. 기존의 데이타 중심 저장 방식에 대한 연구들은 저장 데이타의 효율적인 관리에만 치우쳐 센서 네트워크의 확장에 따른 에너지 효율성 문제를 고려하지 않았다. 본 논문에서는 다차원 센서 데이타 저장의 효율적인 확장성(Scalability)을 지원하는 비균등 영역 분할(Non-Equal Region Spilt) 기법을 제안한다. 제안한 기법은 센서 네트워크를 센서 노드의 분포에 따라 같은 센서 노드 개수를 갖도록 서로 다른 크기의 영역으로 분할하고 분할된 각 영역 내에서 측정된 데이타를 해당 영역에서 저장 및 관리함으로써 센서 네트워크의 확장에 따른 저장 비용을 줄였다. 또한 분할 영역 개수를 센서 네트워크의 크기와 센서 노드 개수, 센서 데이타 발생량에 비례하게 증가시켜 센서 노드의 에너지 소모를 분산시킴으로써 센서 네트워크의 수명 연장과 확장성을 높였다.

  • PDF