• Title/Summary/Keyword: sensor arrangement

Search Result 105, Processing Time 0.032 seconds

Design and Fabrication of a Field Mill for Ground-Level Electric Field Measurement (대지전계 측정을 위한 필드밀의 설계 및 제작)

  • Kil, Gyung-Suk;Song, Jae-Yong;Kim, Il-Kwon;Kwon, Jang-Woo;Ahn, Chang-Hwan;Lee, Young-Keun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.52-59
    • /
    • 2007
  • A field mill capable of measuring the magnitude and polarity of electric fields at the ground level was studied to apply to a lightning warning system as a sensor. We designed and fabricated a planar-shutter type field mill with a rotating-vanes. A calibration of the field mill was performed in a vertically symmetrical arrangement which consists of two equal size parallel round plates to form a homogeneous electrical fields. The sensitivity of the field mill was adjusted at 0.5[V/kV/m], and this covers a ranges from 200[V/m] to 20[kV/m]. After the calibration experiment, the field mill was installed on the roof of a building to measure the changes of electric field intensity caused by thunderclouds. During the period from July 1. 2006 to July 15. 2006, the electric field intensity was recorded a ranges of $+2[kV/m]{\sim}-6[kV/m]$ depending on generation, extinction and movement of thunderclouds. From the actual test on the ground it is confirmed that the field mill has a good performance necessary for the measurement of DC electric fields.

Development of test methodology and detail standard for ECDIS (선박항해용전자해도시스템 인증 기준 및 시험기술 개발)

  • 심우성;서상현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.269-274
    • /
    • 2004
  • The marine electronic system for safe navigation such as ECDIS has been contributing to increase the safety of navigation, decreasing the mariner's load of navigation. The ECDIS should be developed and approved by international standard of IMO for performance standard and IEC for type-approval method and required results. However, these standards have some ambiguities for us not to directly adopt them for real approval system, so we should analyze them for more clear meaning and prepare our own detail standard for type-approval system. The first thing to do for the goal of this research was to analyze the standard in detail and make ambiguity be cleared in our own standards, considering each test item in view of test methodology. For the result of analysis we could develop more evident and detail type-approval standard for each test item with test technology needed. Especially, we developed the colour differentiation test process of ECDIS monitor, which include the colour differentiation formula derived from CIE colour scheme. Several test items require sensor informations of navigation equipment compatible with IEC 61162. We also developed the signal simulator for general messages of IEC 61162 that must be provided. Additionally, the type-approval processes and standards for Back-up arrangement and RCDS mode were developed.

  • PDF

Smart meter data transmission device and power IT system using LTE and IoT technologies (LTE와 IoT 기술을 이용한 스마트미터 데이터 전송장치와 전력 IT 시스템)

  • Kang, Ki-Beom;Kim, Hong-Su;Jwa, Jeong-Woo;Kim, Ho-Chan;Kang, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.117-124
    • /
    • 2017
  • A Smart Grid is a system that can efficiently use energy by exchanging real-time information in both directions between a consumer and a power supplier using ICT technology on an existing power network. DR(Demand response) is an arrangement in which electricity users can sell the electricity they save to the electricity market when the price of electricity is high or the power system is crisis. In this study, we developed a power meter data transmission device and power IT system that measure the demand information in real-time using a smart meter and transmit it to a cloud server. The power meter data transmission device developed in this study uses alight sensor connected to a Raspberry Pi 3 to measure the number of blinking lamps on the KEPCO meter per unit of power, in order to provide reliable data without any measurement errors with respect to the KEPCO power data. The power measurement data transmission device uses the standard communication protocol, OpenADR 2.0b. The measured data is transmitted to the power IT system, which consists of the VEN, VTN, and calculation program, via the LTE WiFi communication network and stored in its MySQL DB. The developed power measurement data transmission device issues a power supply instruction and performs a peak reduction DR when a power system crisis occurs. The developed power meter data transmission device has the advantage of allowing the user to adjust it every 1 minute, where as the existing smart metering time is fixed at once every 15 minutes.

EFFECT OF FIBER DIRECTION ON THE POLYMERIZATION SHRINKAGE OF FIBER-REINFORCED COMPOSITES (섬유 보강 복합레진의 섬유 방향이 중합수축에 미치는 영향)

  • Yom, Joong-Won;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.364-370
    • /
    • 2009
  • The aim of this study was to evaluate the effect of fiber direction on the polymerization shrinkage of fiber-reinforced composite. The disc-shaped flowable composite specimens (d = 10 mm, h = 2 mm, Aeliteflo A2, Bisco, Inc., IL, USA) with or without glass fiber bundle (X-80821P Glass Fiber, Bisco, Inc., IL, USA) inside were prepared, and the longitudinal and transversal polymerization shrinkage of the specimens on radial plane were measured with strain gages (Linear S-series 350${\Omega}$, CAS, Seoul, Korea). In order to measure the free polymerization shrinkage of the flowable composite itself, the disc-shaped specimens (d = 7 mm, h = 1 mm) without fiber were prepared, and the axial shrinkage was measured with an LVDT (linear variable differential transformer) displacement sensor. The cross-section of the polymerized specimens was observed with a scanning electron microscope to examine the arrangement of the fiber bundle in composite. The mean polymerization shrinkage value of each specimen group was analyzed with ANOVA and Scheffe post-hoc test (${\alpha}$=0.05). The radial polymerization shrinkage of fiber-reinforced composite was decreased in the longitudinal direction of fiber, but increased in the transversal direction of fiber (p<0.05). We can conclude that the polymerization shrinkage of fiber-reinforced composite splint or restoratives is dependent on the direction of fiber.

Indoor Temperature Analysis by Point According to Facility Operation of IoT-based Vertical Smart Farm (IoT 기반 수직형 스마트 팜의 설비운영에 따른 지점별 실내온도분석)

  • Kim, Handon;Jung, Mincheol;Oh, Donggeun;Cho, Hyunsang;Choi, Seun;Jang, Hyounseung;Kim, Jimin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.98-105
    • /
    • 2022
  • It is essential for vertical smart farms that artificially grow crops in an enclosed space to properly utilize air environment facilities to create an appropriate growth environment. However, domestic vertical smart farm companies are creating a growing environment by relying on empirical data rather than systematic methods. Using IoT to create a growing environment based on systematic and precise monitoring can increase crop production yield and maximize profitability. This study aims to construct a monitoring system using IoT and to analyze the cause by demonstrating the imbalance of temperature environment, which is a significant factor in crop cultivation. 1) The horizontal temperature distribution of the multi-layer shelf was measured with different operating methods of LED and air conditioner. As a result, there was a temperature difference of "up to 1.7℃" between the sensors. 2) As a result of measuring the vertical temperature distribution, the temperature difference was "up to 6.3℃". In order to reduce this temperature gap, a strategy for proper arrangement and operation of air conditioning equipment is required.