DOI QR코드

DOI QR Code

Indoor Temperature Analysis by Point According to Facility Operation of IoT-based Vertical Smart Farm

IoT 기반 수직형 스마트 팜의 설비운영에 따른 지점별 실내온도분석

  • Kim, Handon (Architectural Engineering Program, School of Architecture, Seoul National University of Science and Technology) ;
  • Jung, Mincheol (Architectural Engineering Program, School of Architecture, Seoul National University of Science and Technology) ;
  • Oh, Donggeun (Architectural Engineering Program, School of Architecture, Seoul National University of Science and Technology) ;
  • Cho, Hyunsang (Architectural Engineering Program, School of Architecture, Seoul National University of Science and Technology) ;
  • Choi, Seun (Architectural Engineering Program, School of Architecture, Seoul National University of Science and Technology) ;
  • Jang, Hyounseung (Architectural Engineering Program, School of Architecture, Seoul National University of Science and Technology) ;
  • Kim, Jimin (Architectural Engineering Program, School of Architecture, Seoul National University of Science and Technology)
  • 김한돈 (서울과학기술대학교 건축과) ;
  • 정민철 (서울과학기술대학교 건축과) ;
  • 오동근 (서울과학기술대학교 건축학부) ;
  • 조현상 (서울과학기술대학교 건축학부) ;
  • 최세은 (서울과학기술대학교 건축학부) ;
  • 장현승 (서울과학기술대학교 건축학부) ;
  • 김지민 (서울과학기술대학교 건축학부)
  • Received : 2021.12.27
  • Accepted : 2022.01.03
  • Published : 2022.01.31

Abstract

It is essential for vertical smart farms that artificially grow crops in an enclosed space to properly utilize air environment facilities to create an appropriate growth environment. However, domestic vertical smart farm companies are creating a growing environment by relying on empirical data rather than systematic methods. Using IoT to create a growing environment based on systematic and precise monitoring can increase crop production yield and maximize profitability. This study aims to construct a monitoring system using IoT and to analyze the cause by demonstrating the imbalance of temperature environment, which is a significant factor in crop cultivation. 1) The horizontal temperature distribution of the multi-layer shelf was measured with different operating methods of LED and air conditioner. As a result, there was a temperature difference of "up to 1.7℃" between the sensors. 2) As a result of measuring the vertical temperature distribution, the temperature difference was "up to 6.3℃". In order to reduce this temperature gap, a strategy for proper arrangement and operation of air conditioning equipment is required.

밀폐된 공간에서 인공적인 방법으로 작물을 재배하는 수직형 스마트 팜은 공기 환경 설비를 적절히 활용하여 적정한 생육환경을 조성하는 것이 중요하다. 하지만 국내 수직형 스마트 팜 기업들은 체계적인 방법이 아닌 경험적 데이터에 의존하여 생육환경을 조성하고 있다. IoT를 활용하여 체계적이고 정밀한 모니터링을 토대로 생육환경을 조성한다면 작물의 생산 수율을 높이고 수익성을 극대화할 수 있다. 본 연구의 목적은 IoT를 활용하여 모니터링 시스템을 구성하고, 작물 재배에 주요한 요인인 온도 환경의 불균형을 실증하여 그 원인을 분석하는 데 있다. LED와 냉방기의 가동 방식을 달리하며 1) 다층 선반의 수평 온도 분포를 측정한 결과 센서 간에 "최대 1.7℃"의 온도 격차를 보였다. 2) 수직 온도 분포를 측정한 결과 "최대 6.3℃"의 온도 차이를 보였다. 이러한 온도 격차를 줄이기 위해서는 공조설비의 적절한 배치와 운영 방식에 대한 전략이 필요하다.

Keywords

Acknowledgement

본 연구는 서울과학기술대학교 교내연구비의 지원으로 수행된 결과의 일부임.

References

  1. Budiharto, W., Andreas, V., Irwansyah, E., Suroso, J.S., and Gunawan, A.A.S. (2021). "IMPLEMENTATION OF WEMOS D1 FOR WI-FI BASED CONTROLLER TANKBASED MILITARY ROBOT." ICIC express letters. Part B, Applications: an international journal of research and surveys, 12(4), pp. 377-382.
  2. Dvorski, D.D. (2007). "Installing, configuring, and developing with Xampp." Skills Canada.
  3. Hatfield, J.L., and Prueger, J.H. (2015). "Temperature extremes: Effect on plant growth and development." Weather and climate extremes, 10, pp. 4-10. https://doi.org/10.1016/j.wace.2015.08.001
  4. Kacira, M., Mattson, N., Dickson, R., and Lopez, R. (2018). "Urban crop production in vertical farms." Produce Grower, USA, (Mar, 26, 2018)
  5. Kim, Y.G., Jung, G.M., and Lim, J.S. (2021). "Internet of Things Communication Technology Research Trend in Smart Farm Environment." The Journal of The Korean Institute of Communication Sciences, Korea Institute Of Communication Sciences, 38(8), pp. 11-18.
  6. Kim, H.D., Jung, M.C., Jang, H.S., and Kim, J.M. (2021). "Development of an Air Quality Monitoring Systems Optimized for Vertical Smart Farm." Proceedings of the 2021 Spring Annal Conference of AIK, ARICHITECTURAL INSTITUTE OF KOREA, 41(1), pp. 473-474.
  7. Kim, H.D., Jung, M.C., Choi, S.E., Cho, H.S., Oh, D.G., Jang, H.S., and Kim, J.M. (2021). "Analysis of Indoor Air Temperature by Point of the Vertical Smart Farm Using IoT." Proceedings of the 2021 Autumn Annal Conference of AIK, ARICHITECTURAL INSTITUTE OF KOREA, 41(2), pp. 383-384.
  8. Kim, H.D., Lee, J.A., Choi, S.E., Jang, H.S., and Kim, J.M. (2021). "Development of Building System for Achieving an Optimal Growth Environment in a Vertical Smart Farm." Korean Journal of Construction Engineering and Management, KICEM, 22(4), pp. 3-10. https://doi.org/10.6106/KJCEM.2021.22.4.003
  9. Li, X., Shi, W., Broughton, K., Smith, R., Sharwood, R., Payton, P., Bange, M., and Tissue, D.T. (2020). "Impacts of growth temperature, water deficit and heatwaves on carbon assimilation and growth of cotton plants (Gossypium hirsutum L.)." Environmental and Experimental Botany, 179, p. 104204. https://doi.org/10.1016/j.envexpbot.2020.104204
  10. Mihai, B.O.G.D.A.N. (2016). "How to use the DHT22 sensor for measuring temperature and humidity with the arduino board." Acta Uiversitatis Cibiniensis-Technical Series, 68, pp. 22-25.
  11. Niam, A.G., Muharam, T.R., Widodo, S., Solahudin, M., and Sucahyo, L. (2019). "CFD simulation approach in determining air conditioners position in the mini plant factory for shallot seed production." In AIP Conference Proceedings, AIP Publishing LLC, 2062(1), p. 020017.
  12. Parvez, B., Haidri, R.A., and Verma, J.K. (2020). "IoT in Agriculture." In 2020 International Conference on Computational Performance Evaluation, IEEE, pp. 844-847.
  13. Ramli, M.R., Daely, P.T., Kim, D.S., and Lee, J.M. (2020). "IoT-based adaptive network mechanism for reliable smart farm system." Computers and Electronics in Agriculture, 170, p. 105287. https://doi.org/10.1016/j.compag.2020.105287
  14. Samach, A., and Wigge, P.A. (2005). "Ambient temperature perception in plants." Current opinion in plant biology, 8(5), pp. 483-486. https://doi.org/10.1016/j.pbi.2005.07.011
  15. Zhang, Y., and Kacira, M. (2017). "Analysis of environmental uniformity in a plant factory using computational fluid dynamics (CFD) analysis." In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1227, pp. 607-614.
  16. Zhang, Y., Kacira, M., and An, L. (2016). "A CFD study on improving air flow uniformity in indoor plant factory system." biosystems engineering, 147, 1 https://doi.org/10.1016/j.biosystemseng.2016.03.006