• Title/Summary/Keyword: sensitive grain size

Search Result 46, Processing Time 0.025 seconds

Fabrication and Characteristics of Y-TZP/Ce-TZP Structural Ceramics (Y-TZP/Ce-TZP 구조세라믹스의 제조 및 특성연구)

  • 이종현;이윤복;김영우;오기동;박흥채
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.10
    • /
    • pp.1177-1185
    • /
    • 1996
  • Y-TZP/Ce-TZP ceramics having relative sintered densities of>95% average grain sizes of 0.36$\mu\textrm{m}$ microhar-dness of 1150 kg/mm2 fracture strength of 390-830 MPa and toughness of 6.4-10.2 MPa$.$mm1/2 were prepared by conventional sintering of 3 mol% Y2O3-ZrO2 and 12 mol% CeO2-ZrO2 powders at 1400 and 1500$^{\circ}C$ The average grain sizes of Y-TZP/Ce-TZP ceramics were mainly governed by those of Ce-TZP. White increasing Ce-TZP content toughness increased while microhardness and fracture strength decreased. With comparing microhardness and toughness fracture strength was more sensitive on not only grain size but also other factors such as microstructural and compositional variations. The densification of Y-TZP/Ce-TZP cermaics was not greatly affected by composition and soaking time at temperature over 1400$^{\circ}C$ With increasing CE-TZP content the stability of t-ZrO2 decreased under thermal aging in air whereas increased in hydrothermal atmosphere and aqueous solution.

  • PDF

Evaluation of the relationship between growing temperature and grain yield components across years in two japonica rice varieties in Korea

  • Kang, Shingu;Cho, Hyeoun-Suk;Yang, Chang-Ihn;Kim, Jeong-Ju;Kim, Sookjin;Choi, Jongseo;Park, Jeong-hwa;Yang, Woonho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.354-354
    • /
    • 2017
  • Rice grain yield is determined by crop dry matter production that is sensitive to temperature. Our objective was to determine whether the difference in temperature between years had an impact on the relationship between yield components and grain yield. Field experiments were conducted under machine transplanting cultivation by using yield data of two japonica rice varieties, Odaebyeo (early maturing) and Nampyeong (mid-late maturing), in 2013 to 2016 in Suwon, Korea. Plant height, dry weight, and yield components were examined by analysis of variance, correlation. The milled rice yield of the two varieties were the highest in 2016, however the lowest yields were observed in the different years. In 2016, Odaebyeo produced $0.96t\;ha^{-1}$ greater milled rice yield than in 2015, and Nampyeong produced $1.11t\;ha^{-1}$ greater yield than in 2013. The correlation analysis indicated that spikelet per panicle (R = 0.53) was associated with grain yield of Odaebyeo. In Nampyeong, biomass at heading date (R = 0.74), 1000-grain weight (R = 0.71), spikelet per panicle (R = 0.58), and panicle number per $m^2$ were associated with grain yield. Sink size (spikelet number per $m^2$) of the two varieties responded to accumulative temperature from transplanting to panicle initiation stage. In this experiment, optimal accumulative temperature before panicle initiation has effect on increased spikelet number and/or number of panicle that were mainly responsible for yield difference. Rice production research to increase grain yield should consider all yield components, but increased emphasis on biomass production before heading is also necessary as well as grain ripening conditions.

  • PDF

Micromachined MoO3 Gas Sensor with Low Power Consumption of 0.5 Watt

  • Jang, Gun-Eik;Wu Q.H.;Liu C.C.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.173-176
    • /
    • 2005
  • A new $MoO_3$ based microsensor with low power consumption was presented. Typical size of sensor was 5mm in width and 8mm in length. As a sensitive electrode, $MoO_3$ was successfully fabricated by IC technology on pyrex glass of $250{\mu}m$ in thickness. After annealing at $550^{\circ}C$ for 3hrs, the film was fully crystallized and demonstrated as pure $MoO_3$ structure. The grain size of $MoO_3$ was plat like and typical size was about $1{\mu}m$. Based on the results of sensitivity measurement, $MoO_3$ microsensor shows especially high selectivity to $H_2$ reducing gas atmosphere. The applied heater power was lower than 0.5 Watt.

Sensitivity Analysis of Fabrication Parameters for Dry Process Fuel Performance Using Monte Carlo Simulations

  • Park Chang Je;Song Kee Chan;Yang Myung Seung
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.338-345
    • /
    • 2004
  • This study examines the sensitivity of several fabrication parameters for dry process fuel, using a random sampling technique. The in-pile performance of dry process fuel with irradiation was calculated by a modified ELESTRES code, which is the CANDU fuel performance code system. The performance of the fuel rod was then analyzed using a Monte Carlo simulation to obtain the uncertainty of the major outputs, such as the fuel centerline temperature, the fission gas pressure, and the plastic strain. It was proved by statistical analysis that for both the dry process fuel and the $UO_2$ fuel, pellet density is one of the most sensitive parameters, but as for the fission gas pressure, the density of the $UO_2$ fuel exhibits insensitive behavior compared to that of the dry process fuel. The grain size of the dry process fuel is insensitive to the fission gas pressure, while the grain size of the $UO_2$ fuel is correlative to the fission gas pressure. From the calculation with a typical CANDU reactor power envelop, the centerline temperature, fission gas pressure, and plastic strain of the dry process fuel are higher than those of the $UO_2$ fuel.

Characterization of Chemically Stabilized $\beta$-cristobalite Synthesized by Solution-Polymerization Route

  • Lee, Sang-Jin
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.116-123
    • /
    • 1997
  • A chemically stabilized $\beta$-cristobalite, which is stabilized by stuffing cations of $Ca^{2+}$ and $Al^{3+}$, was prepared by a solution-polymerization route employing Pechini resin or PVA solution as a polymeric carrier. The polymeric carrier affected the crystallization temperature, morphology of calicined powder, and particle size distribution. In case of the polyvinyl alcohol (PVA) solution process, a fine $\beta$-cristobalite powder with a narrow particle size distribution (average particle size : 0.3$\mu\textrm{m}$) and a BET specific surface area of 72 $\m^2$/g was prepared by an attrition-milling for 1 h after calcination at 110$0^{\circ}C$ for 1h. Wider particle size distribution and higher specific surface area were observed for the $\beta$-cristobalite powder derived from Pechini resin. The cubie(P1-to-tetraganalb) phase transformation in polynystalline $\beta$-cristobalite was induced at approximately 18$0^{\circ}C$. Like other materials showing transformation toughening, a critical size effect controlled the $\beta$-to-$\alpha$ transformation. Densifed cristobalite sample had some cracks in its internal texture after annealing. The cracks, occurred spontaneoulsy on cooling, were observed in the sample with an average grain sizes of 4.0 $\mu\textrm{m}$ or above. In case of the sintered cristobalite having a composition of CaO.$2Al_2O_3$.40SiO$_2$, small amount of amorphous phase and slow grain growth during annealing were observed. Shear stress-induced transformation was also observed in ground specimen. Cristobalite having a composition of CaO.2Al2O3.80SiO2 showed a more sensitive response to shear stress than the CaO.$2Al_2O_3$.40SiO$_2$ type cristobalite. Shear-induced transformation resulted in an increase of volume about 13% in $\alpha$-cristobalite phase on annealing for above 10 h in the case of the former composition.

  • PDF

Interaction of Mechanics and Electrochemistry for Magnesium Alloys

  • Han, En-Hou;Wang, JianQiu;Ke, Wei
    • Corrosion Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.243-251
    • /
    • 2008
  • Magnesium alloys become popular research topic in last decade due to its light weight and relatively high strength-to-weight ratio in the energy aspiration age. Almost all structure materials are supposed to suspend stress. Magnesium is quite sensitive to corrosive environment, and also sensitive to environmental assisted cracking. However, so far we have the limited knowledge about the environmental sensitive cracking of magnesium alloys. The corrosion fatigue (CF) test was conducted. Many factors' effects, like grain size, texture, heat treatment, loading frequency, stress ratio, strain rate, chemical composition of environment, pH value, relative humidity were investigated. The results showed that all these factors had obvious influence on the crack initiation and propagation. Especially the dependence of CF life on pH value and frequency is quite different to the other traditional structural metallic materials. In order to interpret the results, the electrochemistry tests by polarization dynamic curve and electrochemical impedance spectroscopy were conducted with and without stress. The corrosion of magnesium alloys was also studied by in-situ observation in environmental scanning electron microscopy (ESEM). The corrosion rate changed with the wetting time during the initial corrosion process. The pre-charging of hydrogen caused crack initiated at $\beta$ phase, and with the increase of wetting time the crack propagated, implying that hydrogen produced by corrosion reaction participated in the process.

A Study on the Development of Thin Film Type Humidity Sensor Materials by Sol-Gel Method (III) (졸겔법에 의한 박막형 습도센서 소재개발에 관한 연구 (III))

  • You, D.H.;Kang, D.H.;Lee, E.H.;Yuk, J.H.;Jeong, S.Y.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1162-1164
    • /
    • 1995
  • In this paper, $TiO_2$-xmol%$V_2O_5$, x=0.0, 1.0, 2.0, 3.0 specimens are fabricated by Sol-Gel method. For the improvement of humidity sensitive characteristics for specimens, their microstructures are analysed and the optimum processing condition is established. Grain size increases with substitution rate of $V^{5+}$, on $Ti^{4+}$ site. Their humidity sensitive characteristics is good at 1mol% of $V_2O_5$ rate and heat-treated at $700^{\circ}C$. The capacitance of specimens decreases with frequency.

  • PDF

$TiO_{2}-V_{2}O_{5}$ Thin Film Type Humidity Sensor Fabricated by Sol-Gel Method (Sol-Gel법에 의한 $TiO_{2}-V_{2}O_{5}$ 박막형 습도센서)

  • Lee, D.C.;You, D.H.
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.15-21
    • /
    • 1995
  • In this paper, $TiO_{2}-V_{2}O_{5}$ humidity sensors are fabricated by Sol-Gel method. For the establishment of optimum processing condition which is good humidity sensitive characteristics for specimens, their microstructures and crystalline-structures are analysed. Grain size increases with substitution rate of $V^{5+}$ on $Ti^{4+}$ site. From the analysis of XRD, $V^{5+}$ peak can't confirm with $V_{2}O_{5}$ rate. Their humidity sensitive characteristics is good at 1mol% of $V_{2}O_{5}$ rate and heat-treated at $700^{\circ}C$. The capacitance of specimens decreases with frequency.

  • PDF

Humidity-Sensitive Characteristics of ${MgCr_2}{O_4}$-Based Thin-Film Humidity Sensors (${MgCr_2}{O_4}$계 박막 습도센서의 감습 특성)

  • 편영미;김태송;유광수
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.537-544
    • /
    • 2000
  • Thin-film humidity sensor which TiO2, ZrO2, or CeO2 was added to MgCr2O4-based materials, respectively, were fabricated on the alumina substrate by using a resistant-heating evaporator. Thin films were approximately 2${\mu}{\textrm}{m}$ in grain size and shwoed porous microstructures. The resistance of the sensor decreased with increasing the relative humidity and the MgCr2O4-TiO2 sensor had the best humidity-sensing characteristics (linearity in relative humidity versus resistance).

  • PDF

Effect of Electrodeposition Condition on GMR Co/Cu Multilayers

  • Rheem, Young-Woo;Yoo, Bong-Young
    • Journal of Magnetics
    • /
    • v.12 no.3
    • /
    • pp.124-128
    • /
    • 2007
  • Co/Cu GMR multilayers were electrodeposited from various electrolytes using the dual bath technique to achieve high sensitive GMR multilayers. GMR ratio and sensitivity were strongly influenced by solution compositions and electrodeposition parameters where GMR and sensitivity of 12% and 0.052%/Oe were achieved from pyrophosphate baths. The effect of plating conditions on properties of Co/Cu multilayers may be attributed to crystallinity and grain size of deposits, and the ability of plating solutions to deposit contiguous films at lower nano thicknesses.