• Title/Summary/Keyword: sensing time

Search Result 2,603, Processing Time 0.038 seconds

The Effect of Multiple Energy Detector on Evidence Theory Based Cooperative Spectrum Sensing Scheme for Cognitive Radio Networks

  • Khan, Muhammad Sajjad;Koo, Insoo
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.295-309
    • /
    • 2016
  • Spectrum sensing is an essential function that enables cognitive radio technology to explore spectral holes and resourcefully access them without any harmful interference to the licenses user. Spectrum sensing done by a single node is highly affected by fading and shadowing. Thus, to overcome this, cooperative spectrum sensing was introduced. Currently, the advancements in multiple antennas have given a new dimension to cognitive radio research. In this paper, we propose a multiple energy detector for cooperative spectrum sensing schemes based on the evidence theory. Also, we propose a reporting mechanism for multiple energy detectors. With our proposed system, we show that a multiple energy detector using a cooperative spectrum sensing scheme based on evidence theory increases the reliability of the system, which ultimately increases the spectrum sensing and reduces the reporting time. Also in simulation results, we show the probability of error for the proposed system. Our simulation results show that our proposed system outperforms the conventional energy detector system.

On-line Phase Tracking of Patch Type EFPI Sensor and Fuzzy Logic Vibration Control (패치형 광섬유 센서를 이용한 구조물의 동특성 감지 및 퍼지 진동 제어)

  • 한재흥;장영환;김도형;이인
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.568-574
    • /
    • 2004
  • On-line phase tracking of an extrinsic Fabry-Perot interferometer (EFPI) and experimental vibration control of a composite beam with a sensing-patch are investigated. We propose a sensing-patch for the compensation of the interferometric non-linearity. In this paper, a sensing-patch that comprises an EFPI and a piezo ceramic(PZT) is fabricated and the characteristics of the sensing-patch are experimentally investigated. A simple and practical logic is applied for the real-time tracking of optical phase of an interferometer. Experimental results show that the proposed sensing-patch does not have the non-linear behavior of conventional EFPI and hysteresis of piezoelectric material. Moreover, it has good strain resolution and wide dynamic sensing range. Finally, the vibration control with the developed sensing-patch has been performed using Fuzzy logic controller, and the possibility of sensing-patch as a sensoriactuator is considered.

  • PDF

Occlusion Restoration of Synthetic Stereomate for Remote Sensing Imagery

  • Kim, Hye-Jin;Choi, Jae-Wan;Chang, Ho-Wook;Ryu, Ki-Yun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.439-445
    • /
    • 2007
  • Stereoscopic viewing is an efficient technique for not only computer vision but also remote sensing applications. Generally, stereo pair obtained at the same time is necessary for 3D viewing, but it is possible to synthesize a stereomate suitable for stereo view with a single image and disparity-map. There have been researches concerning the generation of the synthetic stereomate from remote sensing imagery. However it is hard to find researches concerning the restoration of occlusion in stereomate. In this paper, we generated synthetic stereomates from remote sensing images, focused on the occlusion restoration. In order to figure out proper restoration methods depending on the spatial resolution of remote sensing imagery, we tested several methods including general interpolation and inpainting technique, then evaluated the results.

Signal Energy-based Cyclostationary Spectrum Sensing for Wireless Sensor Networks (무선센서네트워크를 위한 신호 에너지 기반 사이클로스테이셔너리 스펙트럼 검출)

  • Nguyen, Quoc Kien;Jeon, Taehyun
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.119-122
    • /
    • 2016
  • Feature detection is recognized as an accurate spectrum sensing approach when the information of the desired signal is partly known at the receiver. This type of detection was proposed to overcome large noise environment. Cyclostationary detection is an example of feature detection in spectrum sensing technique in cognitive radio. However, the cyclostationary process calculation requires a lot of processing time and information about the designed signals. On the other hand, energy detection spectrum sensing is widely known as a simple and compact spectrum sensing technique. However, energy detection is highly affected by large noise and lead to high detection error probability. In this paper, the combination of energy detection and cyclostationary is proposed in order to increase the accuracy and decrease the calculation and processing time. The two-layer threshold is utilized in order to reduce the complexity of computation and processing time in cyclostationary which can lead to the improved throughput of the system. The simulation result shows that the implementation of energy-based cyclostationary detector can help to improve the performance of the system while it can considerably reduce the required time for signal detection.

Preliminary Results On Radar Measurement Of Paddy Field Using C-Band Scatterometer System

  • Jamil, H.;Ali, A.;Yusof, S.;Ahmad, Z.;Mahmood, K.A.;Abu Bakar, S.B.;Aziz, H.;Ibrahim, N.;Koo, V.C.;Sing, L.K.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1002-1004
    • /
    • 2003
  • A ground-based, C-band full polarimetric mobile Scatterometer system has been developed in Malaysia with collaboration between Malaysian Centre for Remote Sensing (MACRES) and Multimedia University (MMU). The main purpose of this system is to measure and monitor backscattering coefficient, ${\sigma }^0$, for earth terrain such as paddy fields, forest and soil surfaces. This paper describes the preliminary results on radar backscatter measurement from paddy field using the mobile C-band Scatterometer system. The measurement campaign was conducted at Sungai Burung area in April 2003. Real time data were collected using four polarization modes (HH, HV, VV and VH), at various incidence angles ranging from 0$^0$ to 60$^0$. The measurement data show consistent results as compared to other reports, which verify the capability of this Scatterometer system as a useful tool for remote sensing.

  • PDF

Real-Time Force Sensing in the Envelope of Zebrafish Egg during Micropipette Penetration

  • Yun, Seok;Kim, Deok-Ho;Kim, Byung-Kyu;Lee, Sang-Ho;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2451-2456
    • /
    • 2003
  • In biological cell manipulation, manual thrust or penetration of an injection pipette into an egg is currently performed by a skilled operator, relying only on visual feedback information. Massive load of various micro injection of either genes, fluid or cells in the postgenomic era calls a more reliable and automatic micro injection system that can test hundreds of genes or cell types at a single experiment. We initiated to study cellular force sensing in zebrafish eggs as the first step for the development of a more controllable micro injection system by any inexperienced operator. Zebrafish eggs at different developmental stages were collected and an integrated biomanipulation system was employed to measure cellular force during penetrating the egg envelope, the chorion. First of all, the biomanipulation system integrated with cellular force sensing instrument is implemented to measure the penetration force of cell membranes and characterize mechanical properties of zebrafish embryo cells. Furthermore, implementation of cellular force sensing system and calibration are presented. Finally, the cellular force sensing of penetrating cell membranes at each developmental stages was experimentally performed. The results demonstrated that the biomanipulation system with force sensing capability can measure cellular force at real-time while the injection operation is undergoing. The magnitude of the measured force was in the range of several hundreds of uN. The precise real-time measurement should provide the first step forwards for the development of an automatic and reliable injection system of various materials into biological cells.

  • PDF

A Perspective on the Electromagnetic Imaging of Aircrafts (비행체의 전자파 영상화 기술동향)

  • 윤용수;이재천
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.167-175
    • /
    • 1999
  • So far, the remote sensing technology has widely been used in a variety of application areas such as military, medical imaging, environment, geology and so forth. The microwave remote sensing uses the wavelengths ranging from around one centimeter up to a few tens of centimeters and is known to be very effective regardless of the weather conditions and the day/night time as compared with the reflective InfraRed (IR) remote sensing or the thermal IR remote sensing. There are three generic modes of synthetic aperture radar imaging systems depending on its application, that is, stripmap mode, spotlight mode, or inverse mode. In this article we focus on the issue of imaging of flying aircrafts for the inverse mode of a ground - based, fixed radar with moving objects. The imaging of flying aircrafts is considered to be an important step for the automatic target recognition systems, and therefore a great deal of efforts have recently been made on the subject. Here we review the three representative methods including the Fourier transform processing, the time - frequency processing, and the reconstruction from the projection. Some relative merits and drawbacks are also discussed.

Throughput Maximization for Cognitive Radio Users with Energy Constraints in an Underlay Paradigm

  • Vu, Van-Hiep;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.2
    • /
    • pp.79-84
    • /
    • 2017
  • In a cognitive radio network (CRN), cognitive radio users (CUs) should be powered by a small battery for their operations. The operations of the CU often include spectrum sensing and data transmission. The spectrum sensing process may help the CU avoid a collision with the primary user (PU) and may save the energy that is wasted in transmitting data when the PU is present. However, in a time-slotted manner, the sensing process consumes energy and reduces the time for transmitting data, which degrades the achieved throughput of the CRN. Subsequently, the sensing process does not always offer an advantage in regards to throughput to the CRN. In this paper, we propose a scheme to find an optimal policy (i.e., perform spectrum sensing before transmitting data or transmit data without the sensing process) for maximizing the achieved throughput of the CRN. In the proposed scheme, the data collection period is considered as the main factor effecting on the optimal policy. Simulation results show the advantages of the optimal policy.

Spectrum Sensing System in Software-defined Radio to Determine Spectrum Availability

  • Llames, Gerome Jan M.;Banacia, Alberto S.
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.2
    • /
    • pp.100-106
    • /
    • 2016
  • Spectrum sensing is an integral part of cognitive radio, which seeks to address the perceived spectrum scarcity that is caused by inefficient utilization of the available spectrum. In this paper, a spectrum sensing system using energy detection for analog TV and FM broadcast transmitters as well as modified Integrated Services Digital Broadcasting Terrestrial (ISDB-T) signals is implemented on a software-defined radio platform using GNU' Not Unix (GNU) radio and the N200 Universal Software Radio Peripheral (USRP). Real-time implementation and experimental tests were conducted in Metro Cebu, a highly urbanized area in the southern part of the Philippines. Extensive tests and measurements were necessary to determine spectrum availability, particularly in the TV band. This is in support of the Philippine government' efforts to provide internet connectivity to rural areas. Experimental results have so far met IEEE 802.22 requirements for energy detection spectrum sensing. The designed system detected signals at -114 dBm within a sensing time of 100 ms. Furthermore, the required $P_d({\geq}90)$ and $P_{fa}({\leq}10)$ of the standard were also achieved with different thresholds for various signal sources representing primary users.

Compressed Sensing Techniques for Video Transmission of Multi-Copter (멀티콥터 영상 전송을 위한 압축 센싱 기법)

  • Jung, Kuk Hyun;Lee, Sun Yui;Lee, Sang Hwa;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.63-68
    • /
    • 2014
  • This paper proposed a novel compressed sensing (CS) technique for an efficient video transmission of multi-copter. The proposed scheme is focused on reduction of the amount of data based on CS technology. First, we describe basic principle of Spectrum sensing. And then we compare AMP(Approximate Message Passing) with CoSaMP(Compressive Sampling Matched Pursuit) through mathematical analysis and simulation results. They are evaluated in terms of calculation time and complexity, then the promising algorithm is suggestd for multicopter operation. The result of experiment in this paper shows that AMP algorithm is more efficient than CoSaMP algorithm when it comes to calculation time and image error probability.