• Title/Summary/Keyword: sensing time

Search Result 2,603, Processing Time 0.031 seconds

Liquid level measurement system using capacitive sensor and optical sensor

  • Shim, Joonhwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.778-783
    • /
    • 2013
  • Measurement of liquid level in storage and processing vessels, tanks, wells, reservoirs and hoppers is commonly needed. The several different ways to measure the liquid level of oil or water tank have been provided such as an electrostatic capacity, a supersonic waves and an optical science etc. In the study, we have constructed the stable and efficient measurement system to measure the level of liquid at real-time and to get accurate measurement of the maximum and minimum level of the tank. For this purpose, we suggest double sensing methods by adopting both capacitive and optical sensing. The experimental results, presented in this paper, illustrate the effectiveness of the proposed method under different sensing methods.

Feasibility study of wide-band low-profile ultrasonic sensor with flexible piezoelectric paint

  • Li, Xin;Zhang, Yunfeng
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.565-582
    • /
    • 2008
  • This paper presents a feasibility study of flexible piezoelectric paint for use in wide-band low-profile surface-mount or embeddable ultrasonic sensor for in situ structural health monitoring. Piezoelectric paint is a piezoelectric composite with 0-3 connectivity. Because of its ease of application, piezoelectric paint can be readily fabricated into sensing element with complex pattern. This study examines the characteristics of piezoelectric paint in acoustic emission signal and ultrasonic guided wave sensing. A series of ultrasonic tests including pitch catch and pencil break tests were performed to validate the ultrasonic wave sensing capability of piezoelectric paint. The results of finite element simulation of ultrasonic wave propagation, and acoustic emission generated by a pencil lead break on an aluminum plate are also presented in this paper along with corresponding experimental data. Based on the preliminary experimental results, the piezoelectric paint appears to offer a promising sensing material for use in real-time monitoring of crack initiation and propagation in both metallic and composite structures.

IMPERVIOUS SURFACE ESTIMATION USING REMOTE SENSING IMAGES AND TREE REGRESSIOIN

  • Kim, Soo-Young;Kim, Jong-Hong;Heo, Joon;Heo, Jun-Haeng
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.239-242
    • /
    • 2006
  • Impervious surface is an important index for the estimation of urbanization and environmental change. In addition, impervious surface has an influence on the parameters of rainfall-runoff model during rainy season. The increase of impervious surface causes peak discharge increasing and fast concentration time in urban area. Accordingly, impervious surface estimation is an important factor of urban rainfall-runoff model development and calibration. In this study, impervious surface estimation is performed by using remote sensing images such as landsat-7 ETM+ and high resolution satellite image and regression tree algorithm based on case study area ? Jungnang-cheon basin in Korea.

  • PDF

Photo-sensing Characteristics of VO2 Nanowires

  • Sohn, Ahrum;Kim, Eunah;Kim, Haeri;Kim, Dong-Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.197.1-197.1
    • /
    • 2014
  • VO2 has intensively investigated for several decades due to its interesting physical properties, including metal-insulator transition (MIT), thermochromic and thermoelectric properties, near the room temperature. And also gas and photo sensing properties of VO2 nanowires have attracted increasing research interest due to the high sensitivity and multi-sensing capability. We studied the light-induced resistance change of VO2 nanowires. In particular, we have investigated plasmonic enhancement of the photo-sensing properties of the VO2 nanowires. To select proper wavelength, we performed finite-difference time-domain simulations of electric field distribution in the VO2 nanowires attached with Ag nanoparticles. Localized surface plasmon resonance (LSPR) is expected at wavelength of 560 nm. The photo-sensitivity was carefully examined as a function of the sample temperature. In the presentation, we will discuss physical origins of the photo-induced resistance change in VO2.

  • PDF

A Dynamic QoS Model for improving the throughput of Wideband Spectrum Sharing in Cognitive Radio Networks

  • Manivannan, K.;Ravichandran, C.G.;Durai, B. Sakthi Karthi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3731-3750
    • /
    • 2014
  • This paper considers a wideband cognitive radio network (WCRN) which can simultaneously sense multiple narrowband channels and thus aggregate the detected available channels for transmission and studies the ergodic throughput of the WCRN that operated under: the wideband sensing-based spectrum sharing (WSSS) scheme and the wideband opportunistic spectrum access (WOSA) scheme. In our analysis, besides the average interference power constraint at PU, the average transmit power constraint of SU is also considered for the two schemes and a novel cognitive radio sensing frame that allows data transmission and spectrum sensing at the same time is utilized, and then the maximization throughput problem is solved by developing a gradient projection method. Finally, numerical simulations are presented to verify the performance of the two proposed schemes.

Projectile's Velocity Effect for Voltage Induced at Sensing Coil for Applying to Air Bursting Munition

  • Ryu, Kwon-Sang;Shin, Jun-Goo;Jung, Kyu-Chae;Son, Derac.
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.90-94
    • /
    • 2013
  • We designed a model composed of a ring type magnet, a yoke, and a sensing coil embedded in a projectile for simulating the muzzle velocity. The muzzle velocity was obtained from the master curve for the induced voltage at sensing coil and the velocity as the projectile pass through the magnetic field. The induced voltage and the projectile's velocity are fitted by the $2^{nd}$ order polynomial. The skin effect difference between projectiles which consist of aluminum-aluminum and aluminum-steel was small. The projectile will surely be burst at the pre-determined target area using the flight time and the projectile muzzle velocity calculated from the voltage induced at the sensing coil on the projectile.

Enhancing Gas Response Characteristics of Mixed Metal Oxide Gas Sensors

  • Balamurugan, Chandran;Song, Sun-Ju;Kim, Ho-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.1-20
    • /
    • 2018
  • Semiconducting nanomaterials have attracted considerable interest in recent years due to their high sensitivity, selectivity, and fast response time. In addition, for portable applications, they have low power consumption, lightweight, simple in operation, a low maintenance cost. Furthermore, it is easy to manufacture microelectronic sensor structures with metallic oxide sensitive thin layers. The use of semiconducting metal oxides to develop highly sensitive chemiresistive sensing systems remains an important scientific challenge in the field of gas sensing. According to the sensing mechanisms of gas sensors, the overall sensor conductance is determined by surface reactions and the charge transfer processes between the adsorbed species and the sensing material. The primary goal of the present study is to explore the possibility of using semiconducting mixed metal oxide nanostructure as a potential sensor material for selective gases.

Design on Integrated Land and Water Resources Management System Based on Remote Sensing and GIS in Shehezi City

  • Zhu, Gaolong;Chen, Xiuwan
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.500-505
    • /
    • 2002
  • Based on the real-time monitoring by remote sensing and dynamic management by GIS on agricultural land and water resources in arid area, we solved the practicability and popularization of small-scale spatial information service system. Through demonstration, the standards of spatial information service database of agricultural land and water resources is set up, and the agricultural land and water resources management system in Shehezi City of Xinjiang Autonomy is established, which provides periodically the spatial information services needed by agricultural production to support for sustainable development in arid area.

  • PDF

A Study of the Infrared Temperature Sensing System far Measuring Surface Temperature in Laser Welding(II) - Effect of the System Parameter on Infrared Temperature Measurement - (레이저용접부 온도측정을 위한 적외선 온도측정장치의 개발에 관한 연구 (II) - 적외선 온도측정에서 제인자의 영향 -)

  • 이목영;김재웅
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.69-75
    • /
    • 2002
  • This study investigated the effect of the system parameters on penetration depth measurement using infrared temperature sensing system. The distance from focusing lens to detector was varied to diminish the error in measuring weld bead width. The effect of bead surface shape on measured surface temperature profile was evaluated using specimen heated by electric resistance. The measuring distance from laser beam was changed to optimize the measuring point. The results indicated that the monitoring device of surface temperature using infrared detector array was applicable to real time penetration depth control.

Future Trends in Microcomputer Image Processing Technology

  • Yang, Young-Kyu;Miller, Lee-D.
    • Korean Journal of Remote Sensing
    • /
    • v.2 no.1
    • /
    • pp.35-47
    • /
    • 1986
  • The progress in computer technology has significantly improved the capabilities of the microcomputer image processing systems and brought down their hardware costs. This on-going trend of technological development seems to bring further substantive improvements in microcomputer image processing and decreasing hardware costs. The technical development in microcomputer image processing system including VLSI technology, semiconductor memory, disk and tape storage, and image display subsystems have been reviewed and their future trend have been projected. The impact of this technology to the development of image processing has been assessed in the time period of immediate future (2-3 years) and near future (5 years).