• Title/Summary/Keyword: sensing technology

Search Result 3,415, Processing Time 0.029 seconds

Study of Feature Based Algorithm Performance Comparison for Image Matching between Virtual Texture Image and Real Image (가상 텍스쳐 영상과 실촬영 영상간 매칭을 위한 특징점 기반 알고리즘 성능 비교 연구)

  • Lee, Yoo Jin;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1057-1068
    • /
    • 2022
  • This paper compares the combination performance of feature point-based matching algorithms as a study to confirm the matching possibility between image taken by a user and a virtual texture image with the goal of developing mobile-based real-time image positioning technology. The feature based matching algorithm includes process of extracting features, calculating descriptors, matching features from both images, and finally eliminating mismatched features. At this time, for matching algorithm combination, we combined the process of extracting features and the process of calculating descriptors in the same or different matching algorithm respectively. V-World 3D desktop was used for the virtual indoor texture image. Currently, V-World 3D desktop is reinforced with details such as vertical and horizontal protrusions and dents. In addition, levels with real image textures. Using this, we constructed dataset with virtual indoor texture data as a reference image, and real image shooting at the same location as a target image. After constructing dataset, matching success rate and matching processing time were measured, and based on this, matching algorithm combination was determined for matching real image with virtual image. In this study, based on the characteristics of each matching technique, the matching algorithm was combined and applied to the constructed dataset to confirm the applicability, and performance comparison was also performed when the rotation was additionally considered. As a result of study, it was confirmed that the combination of Scale Invariant Feature Transform (SIFT)'s feature and descriptor detection had the highest matching success rate, but matching processing time was longest. And in the case of Features from Accelerated Segment Test (FAST)'s feature detector and Oriented FAST and Rotated BRIEF (ORB)'s descriptor calculation, the matching success rate was similar to that of SIFT-SIFT combination, while matching processing time was short. Furthermore, in case of FAST-ORB, it was confirmed that the matching performance was superior even when 10° rotation was applied to the dataset. Therefore, it was confirmed that the matching algorithm of FAST-ORB combination could be suitable for matching between virtual texture image and real image.

Development of tracer concentration analysis method using drone-based spatio-temporal hyperspectral image and RGB image (드론기반 시공간 초분광영상 및 RGB영상을 활용한 추적자 농도분석 기법 개발)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun;Han, Eunjin;Kwon, Siyoon;Kim, Youngdo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.623-634
    • /
    • 2022
  • Due to river maintenance projects such as the creation of hydrophilic areas around rivers and the Four Rivers Project, the flow characteristics of rivers are continuously changing, and the risk of water quality accidents due to the inflow of various pollutants is increasing. In the event of a water quality accident, it is necessary to minimize the effect on the downstream side by predicting the concentration and arrival time of pollutants in consideration of the flow characteristics of the river. In order to track the behavior of these pollutants, it is necessary to calculate the diffusion coefficient and dispersion coefficient for each section of the river. Among them, the dispersion coefficient is used to analyze the diffusion range of soluble pollutants. Existing experimental research cases for tracking the behavior of pollutants require a lot of manpower and cost, and it is difficult to obtain spatially high-resolution data due to limited equipment operation. Recently, research on tracking contaminants using RGB drones has been conducted, but RGB images also have a limitation in that spectral information is limitedly collected. In this study, to supplement the limitations of existing studies, a hyperspectral sensor was mounted on a remote sensing platform using a drone to collect temporally and spatially higher-resolution data than conventional contact measurement. Using the collected spatio-temporal hyperspectral images, the tracer concentration was calculated and the transverse dispersion coefficient was derived. It is expected that by overcoming the limitations of the drone platform through future research and upgrading the dispersion coefficient calculation technology, it will be possible to detect various pollutants leaking into the water system, and to detect changes in various water quality items and river factors.

Visible and SWIR Satellite Image Fusion Using Multi-Resolution Transform Method Based on Haze-Guided Weight Map (Haze-Guided Weight Map 기반 다중해상도 변환 기법을 활용한 가시광 및 SWIR 위성영상 융합)

  • Taehong Kwak;Yongil Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.283-295
    • /
    • 2023
  • With the development of sensor and satellite technology, numerous high-resolution and multi-spectral satellite images have been available. Due to their wavelength-dependent reflection, transmission, and scattering characteristics, multi-spectral satellite images can provide complementary information for earth observation. In particular, the short-wave infrared (SWIR) band can penetrate certain types of atmospheric aerosols from the benefit of the reduced Rayleigh scattering effect, which allows for a clearer view and more detailed information to be captured from hazed surfaces compared to the visible band. In this study, we proposed a multi-resolution transform-based image fusion method to combine visible and SWIR satellite images. The purpose of the fusion method is to generate a single integrated image that incorporates complementary information such as detailed background information from the visible band and land cover information in the haze region from the SWIR band. For this purpose, this study applied the Laplacian pyramid-based multi-resolution transform method, which is a representative image decomposition approach for image fusion. Additionally, we modified the multiresolution fusion method by combining a haze-guided weight map based on the prior knowledge that SWIR bands contain more information in pixels from the haze region. The proposed method was validated using very high-resolution satellite images from Worldview-3, containing multi-spectral visible and SWIR bands. The experimental data including hazed areas with limited visibility caused by smoke from wildfires was utilized to validate the penetration properties of the proposed fusion method. Both quantitative and visual evaluations were conducted using image quality assessment indices. The results showed that the bright features from the SWIR bands in the hazed areas were successfully fused into the integrated feature maps without any loss of detailed information from the visible bands.

Predicting the Effects of Rooftop Greening and Evaluating CO2 Sequestration in Urban Heat Island Areas Using Satellite Imagery and Machine Learning (위성영상과 머신러닝 활용 도시열섬 지역 옥상녹화 효과 예측과 이산화탄소 흡수량 평가)

  • Minju Kim;Jeong U Park;Juhyeon Park;Jisoo Park;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.481-493
    • /
    • 2023
  • In high-density urban areas, the urban heat island effect increases urban temperatures, leading to negative impacts such as worsened air pollution, increased cooling energy consumption, and increased greenhouse gas emissions. In urban environments where it is difficult to secure additional green spaces, rooftop greening is an efficient greenhouse gas reduction strategy. In this study, we not only analyzed the current status of the urban heat island effect but also utilized high-resolution satellite data and spatial information to estimate the available rooftop greening area within the study area. We evaluated the mitigation effect of the urban heat island phenomenon and carbon sequestration capacity through temperature predictions resulting from rooftop greening. To achieve this, we utilized WorldView-2 satellite data to classify land cover in the urban heat island areas of Busan city. We developed a prediction model for temperature changes before and after rooftop greening using machine learning techniques. To assess the degree of urban heat island mitigation due to changes in rooftop greening areas, we constructed a temperature change prediction model with temperature as the dependent variable using the random forest technique. In this process, we built a multiple regression model to derive high-resolution land surface temperatures for training data using Google Earth Engine, combining Landsat-8 and Sentinel-2 satellite data. Additionally, we evaluated carbon sequestration based on rooftop greening areas using a carbon absorption capacity per plant. The results of this study suggest that the developed satellite-based urban heat island assessment and temperature change prediction technology using Random Forest models can be applied to urban heat island-vulnerable areas with potential for expansion.

GOCI-II Based Low Sea Surface Salinity and Hourly Variation by Typhoon Hinnamnor (GOCI-II 기반 저염분수 산출과 태풍 힌남노에 의한 시간별 염분 변화)

  • So-Hyun Kim;Dae-Won Kim;Young-Heon Jo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2023
  • The physical properties of the ocean interior are determined by temperature and salinity. To observe them, we rely on satellite observations for broad regions of oceans. However, the satellite for salinity measurement, Soil Moisture Active Passive (SMAP), has low temporal and spatial resolutions; thus, more is needed to resolve the fast-changing coastal environment. To overcome these limitations, the algorithm to use the Geostationary Ocean Color Imager-II (GOCI-II) of the Geo-Kompsat-2B (GK-2B) was developed as the inputs for a Multi-layer Perceptron Neural Network (MPNN). The result shows that coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (RRMSE) between GOCI-II based sea surface salinity (SSS) (GOCI-II SSS) and SMAP was 0.94, 0.58 psu, and 1.87%, respectively. Furthermore, the spatial variation of GOCI-II SSS was also very uniform, with over 0.8 of R2 and less than 1 psu of RMSE. In addition, GOCI-II SSS was also compared with SSS of Ieodo Ocean Research Station (I-ORS), suggesting that the result was slightly low, which was further analyzed for the following reasons. We further illustrated the valuable information of high spatial and temporal variation of GOCI-II SSS to analyze SSS variation by the 11th typhoon, Hinnamnor, in 2022. We used the mean and standard deviation (STD) of one day of GOCI-II SSS, revealing the high spatial and temporal changes. Thus, this study will shed light on the research for monitoring the highly changing marine environment.

Building Change Detection Methodology in Urban Area from Single Satellite Image (단일위성영상 기반 도심지 건물변화탐지 방안)

  • Seunghee Kim;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1097-1109
    • /
    • 2023
  • Urban is an area where small-scale changes to individual buildings occur frequently. An existing urban building database requires periodic updating to increase its usability. However, there are limitations in data collection for building changes over a wide urban. In this study, we check the possibility of detecting building changes and updating a building database by using satellite images that can capture a wide urban region by a single image. For this purpose, building areas in a satellite image are first extracted by projecting 3D coordinates of building corners available in a building database onto the image. Building areas are then divided into roof and facade areas. By comparing textures of the roof areas projected, building changes such as height change or building removal can be detected. New height values are estimated by adjusting building heights until projected roofs align to actual roofs observed in the image. If the projected image appeared in the image while no building is observed, it corresponds to a demolished building. By checking buildings in the original image whose roofs and facades areas are not projected, new buildings are identified. Based on these results, the building database is updated by the three categories of height update, building deletion, or new building creation. This method was tested with a KOMPSAT-3A image over Incheon Metropolitan City and Incheon building database available in public. Building change detection and building database update was carried out. Updated building corners were then projected to another KOMPSAT-3 image. It was confirmed that building areas projected by updated building information agreed with actual buildings in the image very well. Through this study, the possibility of semi-automatic building change detection and building database update based on single satellite image was confirmed. In the future, follow-up research is needed on technology to enhance computational automation of the proposed method.

Study on the Possibility of Estimating Surface Soil Moisture Using Sentinel-1 SAR Satellite Imagery Based on Google Earth Engine (Google Earth Engine 기반 Sentinel-1 SAR 위성영상을 이용한 지표 토양수분량 산정 가능성에 관한 연구)

  • Younghyun Cho
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.229-241
    • /
    • 2024
  • With the advancement of big data processing technology using cloud platforms, access, processing, and analysis of large-volume data such as satellite imagery have recently been significantly improved. In this study, the Change Detection Method, a relatively simple technique for retrieving soil moisture, was applied to the backscattering coefficient values of pre-processed Sentinel-1 synthetic aperture radar (SAR) satellite imagery product based on Google Earth Engine (GEE), one of those platforms, to estimate the surface soil moisture for six observatories within the Yongdam Dam watershed in South Korea for the period of 2015 to 2023, as well as the watershed average. Subsequently, a correlation analysis was conducted between the estimated values and actual measurements, along with an examination of the applicability of GEE. The results revealed that the surface soil moisture estimated for small areas within the soil moisture observatories of the watershed exhibited low correlations ranging from 0.1 to 0.3 for both VH and VV polarizations, likely due to the inherent measurement accuracy of the SAR satellite imagery and variations in data characteristics. However, the surface soil moisture average, which was derived by extracting the average SAR backscattering coefficient values for the entire watershed area and applying moving averages to mitigate data uncertainties and variability, exhibited significantly improved results at the level of 0.5. The results obtained from estimating soil moisture using GEE demonstrate its utility despite limitations in directly conducting desired analyses due to preprocessed SAR data. However, the efficient processing of extensive satellite imagery data allows for the estimation and evaluation of soil moisture over broad ranges, such as long-term watershed averages. This highlights the effectiveness of GEE in handling vast satellite imagery datasets to assess soil moisture. Based on this, it is anticipated that GEE can be effectively utilized to assess long-term variations of soil moisture average in major dam watersheds, in conjunction with soil moisture observation data from various locations across the country in the future.

Rural Systems Visioneering: Paradigm Shift from Flux Measurement to Sustainability Science (지역시스템 비저니어링: 플럭스 관측에서 지속가능성과학으로의 패러다임 전환)

  • Kim, Joon;Kang, Minseok;Oki, Taikan;Park, Eun Woo;Ichii, Kazuhito;Indrawati, Yohana Maria;Cho, Sungsik;Moon, Jihyun;Yoo, Wan Chol;Rhee, Jiyoung;Rhee, Herb;Njau, Karoli;Ahn, Sunghoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.101-116
    • /
    • 2018
  • Sustainability science is an emerging transdisciplinary research which necessitates not only the communication and collaboration of scientists, practitioners and stakeholders from different disciplines and interests, but also the paradigm shift from deterministic and reductionist approaches to the old basic. Ecological-societal systems (ESS) are co-evolving complex systems having many interacting parts (or agents) whose random interactions at local scale give rise to spontaneous emerging order at global scale (i.e., self-organization). Here, the flows of energy, matter and information between the systems and their surroundings play a key role. We introduce a conceptual framework for such continually morphing dynamical systems, i.e. self-organizing hierarchical open systems (SOHOs). To understand the structure and functionality of SOHOs, we revisit the two fundamental laws of physics. Re-interpretation of these principles helps understand the destiny and better path toward sustainability, and how to reconcile ecosystem integrity with societal vision and value. We then integrate the so-called visioneering (V) framework with that of SOHOs as feedback/feedforward loops so that 'a nudged self-organization' may guide systems' agents to work together toward sustainable ESS. Finally, example is given with newly endorsed Sustainable Development Goals (SDG) Lab (i.e., 'Rural systems visioneering') by Future Earth, which is now underway in rural villages in Tanzania.

Effect of the Configuration of Contact Type Textile Electrode on the Performance of Heart Activity Signal Acquisition for Smart Healthcare (스마트 헬스케어를 위한 심장활동 신호 검출용 접촉식 직물전극의 구조가 센싱 성능에 미치는 영향)

  • Cho, Hyun-Seung;Koo, Hye-Ran;Yang, Jin-Hee;Lee, Kang-Hwi;Kim, Sang-Min;Lee, Jeong-Hwan;Kwak, Hwy-Kuen;Ko, Yun-Su;Oh, Yun-Jung;Park, Su-Youn;Kim, Sin-Hye;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.4
    • /
    • pp.63-76
    • /
    • 2018
  • The purpose of this study was to investigate the effect of contact type textile electrode structure on heart activity signal acquisition for smart healthcare. In this study, we devised six contact type textile electrodes whose electrode size and configuration were manipulated for measuring heart activity signals using computerized embroidery. We detected heart activity signals using a modified lead II and by attaching each textile electrode to the chest band in four healthy male subjects in a standing static posture. We measured the signals four times repeatedly for all types of electrodes. The heart activity signals were sampled at 1 kHz using a BIOPAC ECG100, and the detected original signals were filtered through a band-pass filter. To compare the performance of heart activity signal acquisition among the different structures of the textile electrodes, we conducted a qualitative analysis using signal waveform and size as parameters. In addition, we performed a quantitative analysis by calculating signal power ratio (SPR) of the heart activity signals obtained through each electrode. We analyzed differences in the performance of heart activity signal acquisition of the six electrodes by performing difference and post-hoc tests using nonparametric statistic methods on the calculated SPR. The results showed a significant difference both in terms of qualitative and quantitative aspects of heart activity signals among the tested contact type textile electrodes. Regarding the configurations of the contact type textile electrodes, the three-dimensionally inflated electrode (3DIE) was found to obtain better quality signals than the flat electrode. However, regarding the electrode size, no significant difference was found in performance of heart signal acquisition for the three electrode sizes. These results suggest that the configuration method (flat/3DIE), which is one of the two requirements of a contact type textile electrode structure for heart activity signal acquisition, has a critical effect on the performance of heart activity signal acquisition for wearable healthcare. Based on the results of this study, we plan to develop a smart clothing technology that can monitor high-quality heart activity without time and space constraints by implementing a clothing platform integrated with the textile electrode and developing a performance improvement plan.

Comparison of rainfall-runoff performance based on various gridded precipitation datasets in the Mekong River basin (메콩강 유역의 격자형 강수 자료에 의한 강우-유출 모의 성능 비교·분석)

  • Kim, Younghun;Le, Xuan-Hien;Jung, Sungho;Yeon, Minho;Lee, Gihae
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.75-89
    • /
    • 2023
  • As the Mekong River basin is a nationally shared river, it is difficult to collect precipitation data, and the quantitative and qualitative quality of the data sets differs from country to country, which may increase the uncertainty of hydrological analysis results. Recently, with the development of remote sensing technology, it has become easier to obtain grid-based precipitation products(GPPs), and various hydrological analysis studies have been conducted in unmeasured or large watersheds using GPPs. In this study, rainfall-runoff simulation in the Mekong River basin was conducted using the SWAT model, which is a quasi-distribution model with three satellite GPPs (TRMM, GSMaP, PERSIANN-CDR) and two GPPs (APHRODITE, GPCC). Four water level stations, Luang Prabang, Pakse, Stung Treng, and Kratie, which are major outlets of the main Mekong River, were selected, and the parameters of the SWAT model were calibrated using APHRODITE as an observation value for the period from 2001 to 2011 and runoff simulations were verified for the period form 2012 to 2013. In addition, using the ConvAE, a convolutional neural network model, spatio-temporal correction of original satellite precipitation products was performed, and rainfall-runoff performances were compared before and after correction of satellite precipitation products. The original satellite precipitation products and GPCC showed a quantitatively under- or over-estimated or spatially very different pattern compared to APHPRODITE, whereas, in the case of satellite precipitation prodcuts corrected using ConvAE, spatial correlation was dramatically improved. In the case of runoff simulation, the runoff simulation results using the satellite precipitation products corrected by ConvAE for all the outlets have significantly improved accuracy than the runoff results using original satellite precipitation products. Therefore, the bias correction technique using the ConvAE technique presented in this study can be applied in various hydrological analysis for large watersheds where rain guage network is not dense.