• Title/Summary/Keyword: sensible temperature

Search Result 226, Processing Time 0.029 seconds

Operational Water Temperature Forecast for the Nakdong River Basin Using HSPF Watershed Model (HSPF 유역모델을 이용한 낙동강유역 실시간 수온 예측)

  • Shin, Chang Min;Na, Eun Hye;Kim, Duck Gil;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.673-682
    • /
    • 2014
  • A watershed model was constructed using Hydrological Simulation Program Fortran to predict the water temperature at major tributaries of Nakdong River basin, Korea. Water temperature is one of the most fundamental indices used to determine the nature of an aquatic environment. Most processes of an aquatic environment such as saturation level of dissolved oxygen, the decay rate of organic matter, the growth rate of phytoplankton and zooplankton are affected by temperature. The heat flux to major reservoirs and tributaries was analyzed to simulate water temperature accurately using HSPF model. The annual mean heat flux of solar radiation was estimated to $150{\sim}165W/m^2$, longwave radiation to $-48{\sim}-113W/m^2$, evaporative heat loss to $-39{\sim}-115W/m^2$, sensible heat flux to $-13{\sim}-22W/m^2$, precipitation heat flux to $2{\sim}4W/m^2$, bed heat flux to $-24{\sim}22W/m^2$ respectively. The model was calibrated at major reservoir and tributaries for a three-year period (2008 to 2010). The deviation values (Dv) of water temperature ranged from -6.0 to 3.7%, Nash-Sutcliffe efficiency(NSE) of 0.88 to 0.95, root mean square error(RMSE) of $1.7{\sim}2.8^{\circ}C$. The operational water temperature forecasting results presented in this study were in good agreement with measured data and had a similar accuracy with model calibration results.

Heat Budget at Gampo in the Eastern Coast of Korea in 2006 (2006년 동해안 감포의 열수지)

  • Choi, Yong-Kyu;Han, In-Seong;Suh, Young-Sang;Go, Woo-Jin;Kim, Sang-Woo
    • Journal of Environmental Science International
    • /
    • v.18 no.1
    • /
    • pp.33-39
    • /
    • 2009
  • Based on the monthly weather report of Korea Meteorological Administration (KMA) and daily sea surface temperature (SST) data from National Fisheries Research and Development Institute (NFRDI) in 2006, heat budget was estimated at Gampo in the eastern coast of Korea, the region occuring the cold water known as upwelling in summer. Net heat flux was transported from the air to the sea surface during February to November, and it amounts to $345Wm^{-2}$ in monthly mean value. During December to January, the transfer of net heat flux was conversed from the sea surface to the air with $-56Wm^{-2}$ in minimum of monthly mean value in January. Long wave radiation was ranged from $6Wm^{-2}\;to\;106Wm^{-2}$. Sensible heat was varied from $-36Wm^{-2}$(June) to $61Wm^{-2}$(February) and showed negative values from April to August. Latent heat showed $20Wm^{-2}$(July) with its minimum in July and $49Wm^{-2}$ with its maximum in March in monthly mean value. The annual mean of net heat flux is $129Wm^{-2}$, giving an annual heat surplus of $22Wm^{-2}$. Thus, during summer, the upwelled cold water at Gampo, appears to compensate the heat gain. However the ways in which these compensations are accomplished remains to be clarified.

Micrometeorological Characteristics in the Atmospheric Boundary Layer in the Seoul Metropolitan Area during High-Event and Non-event Days

  • Park, Il-Soo;Park, Moon-Soo;Lee, Joonsuk;Jang, Yu Woon
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1223-1237
    • /
    • 2020
  • This study focused on comparing the meteorological conditions in the Atmospheric Boundary Layer (ABL) on high-event days and non-event days in the Seoul Metropolitan Area (SMA). We utilized observed PM10 and meteorological variables at the surface as well as at the upper heights. The results showed that high-event days were consistently associated with lower wind speed, whereas wind direction showed no particular difference between high-event and non-event days with frequent westerlies and northwesterlies for both cases. During high-event days, the temperature was much warmer than the monthly normal values with a sharp increasing trend, and Relative Humidity (RH) was higher than the monthly normal, especially on high-event days in February. During high-event days in spring, a double inversion layer was present at surface and upper heights. This indicates that stability in the multi-layer is an important indicator of higher PM10 concentrations. Net radiation in spring and winter is also closely associated with higher PM10 concentrations. Strong net radiation resulted in large sensible heat, which in turn facilitated a deeper mixing height with diluted PM10 concentrations; in contrast, PM10 concentrations were higher when sensible heat in spring and winter was very low. We also confirmed that convective and friction velocity was higher on non-event days than on high-event days, and this was especially obvious in spring and winter. This indicated that thermal turbulence was dominant in spring, whereas in winter, mechanical turbulence was dominant over the SMA.

Prediction of future hydrologic variables of Asia using RCP scenario and global hydrology model (RCP 시나리오 및 전지구 수문 모형을 활용한 아시아 미래 수문인자 예측)

  • Kim, Dawun;Kim, Daeun;Kang, Seok-koo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.551-563
    • /
    • 2016
  • According to the 4th and 5th assessment of the Intergovernmental Panel on Climate Change (IPCC), global climate has been rapidly changing because of the human activities since Industrial Revolution. The perceived changes were appeared strongly in temperature and concentration of carbon dioxide ($CO_2$). Global average temperature has increased about $0.74^{\circ}C$ over last 100 years (IPCC, 2007) and concentration of $CO_2$ is unprecedented in at least the last 800,000 years (IPCC, 2014). These phenomena influence precipitation, evapotranspiration and soil moisture which have an important role in hydrology, and that is the reason why there is a necessity to study climate change. In this study, Asia region was selected to simulate primary energy index from 1951 to 2100. To predict future climate change effect, Common Land Model (CLM) which is used for various fields across the world was employed. The forcing data was Representative Concentration Pathway (RCP) data which is the newest greenhouse gas emission scenario published in IPCC 5th assessment. Validation of net radiation ($R_n$), sensible heat flux (H), latent heat flux (LE) for historical period was performed with 5 flux tower site-data in the region of AsiaFlux and the monthly trends of simulation results were almost equaled to observation data. The simulation results for 2006-2100 showed almost stable net radiation, slightly decreasing sensible heat flux and quite increasing latent heat flux. Especially the uptrend for RCP 8.5 has been about doubled compared to RCP 4.5 and since late 2060s, variations of net radiation and sensible heat flux would be significantly risen becoming an extreme climate condition. In a follow-up study, a simulation for energy index and hydrological index under the detailed condition will be conducted with various scenario established from this study.

Relationships between Seasonal Duration of Sunshine and Air Temperature in Korea (우리나라의 계절별(季節別) 일조시간(日照時間)과 기온(氣溫)의 상관관계(相關關係) 및 분포(分布)에 관(關)한 연구(硏究))

  • Lee, Jeong-Taek;Yun, Seong-Ho;Park, Moo-Eon
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.155-162
    • /
    • 1995
  • To find out the relationship between duration of sunshine and mean air temperature, monthly climatic data were analyzed in several locations in Korea. Even though mean air temperature was high in summer, duration of sunshine was shorter than winter in Kangneung. Net radiation showed a positive correlation with duration of sunshine and its regression coefficient was the highest in July. An increasing rate of sensible heat flux according to the increment of sunshine hours was significantly high in April and October, but was low in July. In spring and fall, duration of sunshine was positively correlated with the daily temperature difference, but in summer and winter it was negatively correlated with maximum temperature and with the minimum temperature, respectively. In January, one hour increase in sunshine hour lowered the mean air temperature by 1 to $1.7^{\circ}C$.

  • PDF

A Study On Cause Analysis and Improvement About Malfunction of Proximity Sensor Exposed High Temperature (근접센서의 고온 고장발생에 관한 원인분석 및 개선 연구)

  • Park, Jin-Saeng
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • Because internal space of combat vehicle reachs about $80^{\circ}C$ at high temperature period, Proximity Sensor exposed high temperature and humidity, which has function to sense the distance and transfer signal for control unit, have enlarged sensing distance and finally locked on. Malfunction of sensing itself occur frequently, therefore we carried out cause analysis and improvement. We accomplish improvement activity secondly. Through-out many trial and error, we find out that malfunction of sensor occur at high temperature circumstance. To improve, the another Emitter Coil is added to increase voltage difference and improve sensing accuracy about 5~10 times. And we accomplish design improvement to dull temperature and humity change after increasing molding surface to add vibration and shock resistance. We prove that the improved product do not fail after enduring 136hr at $85^{\circ}C$ temperature and 85% relative humidity circumstance chamber.

Thermodynamic Performance Analysis of Regenerative Organic Flash Cycle (재생 유기플래시 사이클의 열역학적 성능 해석)

  • Kim, Kyoung Hoon;Kim, Man Hoe
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.589-596
    • /
    • 2016
  • Recently organic flash cycle (OFC) has been proposed which is a vapor power cycle where heat addition occurs with the working fluid remaining in the liquid state. This study proposes a modified OFC with regeneration and carries out thermodynamic performance analysis of the system utilizing low-temperature heat source in the form of sensible energy. Effects of working fluid and flash temperature are systemically investigated on the system performance such as net power production and thermal efficiency. Results show that the net power production has a peak value with respect to the flash temperature but the thermal efficiency increases with the flash temperature. The regenerative system shows higher thermal efficiency compared to the original OFC and improved potential for recovery of low-temperature heat sources.

Performance Analysis of a Combined Power Cycle Utilizing Low-Temperature Heat Source and LNG Cold Energy (저온 열원 및 LNG 냉열을 이용하는 복합 발전 사이클의 성능 해석)

  • Kim, Kyoung-Hoon;Oh, Jae-Hyeong;Ko, Hyung-Jong
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.4
    • /
    • pp.382-389
    • /
    • 2012
  • Power generation cycle using ammonia-water mixture as working fluid has attracted much attention because of its ability to efficiently convert low-temperature heat source into useful work. If an ammonia-water power cycle is combined with a power cycle using liquefied natural gas (LNG), the conversion efficiency could be further improved owing to the cold energy of LNG at $-162^{\circ}C$. In this work parametric study is carried out on the thermodynamic performance of a power cycle consisted of an ammonia-water Rankine cycle as an upper cycle and a LNG cycle as a bottom cycle. As a driving energy the combined cycle utilizes a low-temperature heat source in the form of sensible heat. The effects on the system performance of the system parameters such as ammonia concentration ($x_b$), turbine 1 inlet pressure ($P_{H_1}$) and temperature ($T_{H_1}$), and condenser outlet temperature ($T_{L_1}$) are extensively investigated. Calculation results show that thermal efficiency increases with the increase of $P_{H_1}$, $T_{H_1}$ and the decrease of $T_{L_1}$, while its dependence on $x_b$ has a downward convex shape. The changes of net work generation with respect to $P_{H_1}$, $T_{H_1}$, $T_{L_1}$, and $x_b$ are roughly linear.

Sensitivity Analysis of Near Surface Air Temperature to Land Cover Change and Urban Parameterization Scheme Using Unified Model (통합모델을 이용한 토지피복변화와 도시 모수화 방안에 따른 지상 기온 모의성능 민감도 분석)

  • Hong, Seon-Ok;Byon, Jae-Young;Park, HyangSuk;Lee, Young-Gon;Kim, Baek-Jo;Ha, Jong-Chul
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.427-441
    • /
    • 2018
  • This study examines the impact of the urban parameterization scheme and the land cover change on simulated near surface temperature using Unified Model (UM) over the Seoul metropolitan area. We perform four simulations by varying the land cover and the urban parameterization scheme, and then compare the model results with 46 AWS observation data from 2 to 9 August 2016. Four simulations were performed with different combination of two urban parameterization schemes and two land cover data. Two schemes are Best scheme and MORUSES (Met Office Reading Urban Surface Exchange Scheme) and two land cover data are IGBP (International Geosphere and Biosphere Programme) and EGIS (Environmental Geographic information service) land cover data. When land use data change from IGBP to EGIS, urban ratio over the study area increased by 15.9%. The results of the study showed that the higher change in urban fraction between IGBP and EGIS, the higher the improvement in temperature performance, and the higher the urban fraction, the higher the effect of improving temperature performance of the urban parameterization scheme. 1.5-m temperature increased rapidly during the early morning due to increase of sensible heat flux in EXP2 compared to CTL. The MORUSES with EGIS (EXP3) provided best agreement with observations and represents a reasonable option for simulating the near surface temperature of urban area.

Analysis of the thermal performances of air-earth direct heat exchanger (공기 지중간 직접열교환시스템의 열성능 해석)

  • Kim, W.K.;An, J.S.;Choi, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.112-121
    • /
    • 1997
  • This study is focused on the development and selection of optimal cool tube system to maximize its thermal performance. Cool tube is devised to reduce the heating and cooling load of building by preheating or refreshing of intake air. Finite volume method was adopted to solve the conduction problem between the cool tube and earth. We examine the cool tube system for two operating periods, a short term(12 hours) and a long term(3 months). The results of short term operations reveal that condensation significantly influences and raises the exit air temperature. For long term operations, optimum conditions of cool tube system are obtained with variations of flow-rate, depth, length and diameter of cool tube.

  • PDF