• Title/Summary/Keyword: semirigid element

Search Result 8, Processing Time 0.019 seconds

Modelling and classification of tubular joint rigidity and its effect on the global response of CHS lattice girders

  • Wang, Wei;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.677-698
    • /
    • 2005
  • In engineering practice, tubular connections are usually assumed pinned or rigid. Recent research showed that tubular joints may exhibit non-rigid behavior under axial or bending loads. This paper is concerned with establishing a new classification for tubular joints and investigating the effect of joint rigidity on the global behavior of CHS (Circular Hollow Section) lattice girders. Parametric formulae for predicting tubular joint rigidities are proposed, which are based on the finite element analyses through systematic variation of the main geometric parameters. Comparison with test results proves the reliability of these formulae. By considering the deformation patterns of respective parts of Vierendeel lattice girders, the boundary between rigid and semirigid tubular connections is built in terms of joint bending rigidity. In order to include characteristics of joint rigidity in the global structural analysis, a type of semirigid element which can effectively reflect the interaction of two braces in K joints is introduced and validated. The numerical example of a Warren lattice girder with different joint models shows the great effect of tubular joint rigidities on the internal forces, deformation and secondary stresses.

On the numerical assessment of the separation zones in semirigid column base plate connections

  • Baniotopoulos, C.C.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.295-309
    • /
    • 1994
  • The present paper concerns the mathematical study and the numerical treatment of the problem of semirigid connections in bolted steel column base plates by taking into account the possibility of appearance of separation phenomena on the contact surface under certain loading conditions. In order to obtain a convenient discrete form to simulate the structural behaviour of a steel column base plate, the continuous contact problem is first formulated as a variational inequality problem or, equivalently, as a quadratic programming problem. By applying an appropriate finite element scheme, the discrete problem is formulated as a quadratic optimization problem which expresses, from the standpoint of Mechanics, the principle of minimum potential energy of the semirigid connection at the state of equilibrium. For the numerical treatment of this problem, two effective and easy-to-use solution strategies based on quadratic optimization algorithms are proposed. This technique is illustrated by means of a numerical application.

Cyclic mechanical model of semirigid top and seat and double web angle connections

  • Pucinotti, Raffaele
    • Steel and Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.139-157
    • /
    • 2006
  • In this paper, a cyclic mechanical model is presented to simulate the behaviour of top and seat with web angle beam-to-column connections. The introduced mechanical model is compared with Eurocode 3 Annex J, its extension, and with experimental data. To have a better insight regarding the actual response of the joints, available results of the experiments, carried out on full-scale top and seat angle joints under monotonic and cyclic loading, are first considered. Subsequently, a finite element model of the test setup is developed. The application of the proposed model, its comparisons with the experimental curves and with the Eurocode 3 Annex J and with its modification, clearly show the excellent quality of the model proposed.

Stability analysis of semi-rigid composite frames

  • Wang, Jing-Feng;Li, Guo-Qiang
    • Steel and Composite Structures
    • /
    • v.7 no.2
    • /
    • pp.119-133
    • /
    • 2007
  • Based on stability theory of current rigid steel frames and using the three-column subassemblage model, the governing equations for determining the effective length factor (${\mu}$-factor) of the columns in semirigid composite frames are derived. The effects of the nonlinear moment-rotation characteristics of beam-to-column connections and composite action of slab are considered. Furthermore, using a two-bay three-storey composite frame with semi-rigid connections as an example, the effects of the non-linear moment-rotation characteristics of connections and load value on the ${\mu}$-factor are numerically studied and the ${\mu}$-factors obtained by the proposed method and Baraket-Chen's method are compared with those obtained by the exact finite element method. It was found that the proposed method has good accuracy and can be used in stability analysis of semi-rigid composite frames.

Hysteresis Behavior of Semirigid CFT Column-to-Beam Connections with a Double Web-Angle (더블 웨브앵글 반강접 CFT 기둥-보 접합부의 이력거동)

  • Lee, Sung Ju;Kim, Joo Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.15-24
    • /
    • 2013
  • This paper presents the results from a systematic finite element study on the bending moment resisting capacity of double web-angle connection for a CFT(concrete filled tube) composite frame subjected to cyclic loading. The three-dimensional nonlinear finite element models are constructed to investigate the rotational stiffness, bending moment capacity, and failure modes of the partially restrained composite CFT connections. A wide scope of additional structural behaviors explain the different influences of the double web-angle connections parameters, such as the different thickness of connection angles and the gage distances of high strength steel connection bar. The moment-rotation angle relationships obtained statically from the finite element analysis are compared with those from Richard's theoretical equation.

Design of 5.8GHz Band 4×4 Butler Matrix using Commercial 90° Hybrid Coupler (상용 90도 하이브리드 커플러를 이용한 5.8GHz 대역 4×4 버틀러매트릭스 설계)

  • Park, Byeong-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.200-205
    • /
    • 2014
  • In this paper, 5.8GHz band $4{\times}4$ Butler matrix is designed using easily accessible commercial $90^{\circ}$ hybrid coupler and semirigid coaxial cable as a transmission line. This Butler matrix is very flexible to changes of antenna system specification like a frequency band because $90^{\circ}$ hybrid coupler changing is all to do. The result of design is the distance of $2{\times}2$ array antenna element is $\sqrt{2}{\lambda}/4$, the 4 beam directions are diagonal of array antenna and phase shifter is not necessary. The beam width is roughly $25^{\circ}$ narrower because of array antenna geometry and the side lobe is about 10dB higher partially than theoretical beam pattern. But the overall beam pattern is similar with theoretical beam. This Butler matrix can be applied to switching beam antenna of 5.8GHz band Wi-Fi and WAVE system.

Monotonic and Hysteresis Behavior of Semirigid CFT Column-to-Beam Connections with a Top-Seat Angle (상·하부 ㄱ형강 반강접 CFT 기둥-보 접합부의 단조 및 이력거동)

  • Lee, Sung Ju;Kim, Joo Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.191-204
    • /
    • 2014
  • In this paper a systematic numerical analysis is performed to obtain the bending moment resisting capacity of a top and seat angle connection, which is a type of partially restrained connection, for a CFT composite frame subjected to cyclic loading. This partially restrained composite CFT connections are fabricated using high strength steel connection bar. The three-dimensional nonlinear finite element models are constructed to investigate the rotational stiffness, bending moment capacity, and failure modes. A wide scope of additional structural behaviors explain the different influences of the top and seat angle connection's parameters, such as the different thickness of connection angles and the gage distances of the high strength steel bar. The moment-rotation angle relationships obtained from the finite element analysis are compared with those from Richard's theoretical equation.

A Critical Review of Foot Orthoses in Normal and Diseased Foot (정상의 발과 병적인 발에서 발보조기 연구의 비판적 고찰)

  • Kim, Seung-Jae;Kim, Jang-Hwan;Tack, Gye-Rae;Bae, Sang-Woo;Park, Yeong-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.81-94
    • /
    • 2007
  • The purpose of this study was to critically review biomechanical studies on foot orthoses (FO) in normal and diseased foot and provide beneficial information obtained from researches until now and future researching focus. The search was performed by Medline and Embase database including studies published in English from January 1980 to April 2007. The searching terms were foot orthoses, foot orthotics, insoles and shoe insert. 57 studies including 54 journal articles and 3 abstracts were finally selected under the conditions of having clinical trials, FO, control condition, movement, scientific measuring system. The reviewed studies were divided into 10 categories according to subject characteristics; healthy normal, excessive pronation or flexible flat foot, rheumatoid arthritis, diabetes, medial knee osteoarthritis, forefoot varus, plantar fasciitis, patellofemoral syndrome, cavus foot and finite element model. In summary, first, soft and semirigid FOs with some degree of cushioning showed much higher comfort and efficacy than rigid FO. Second, no big differences between prefabricated and custom FO were shown. Third, the full length's FO was preferable to the half length's FO or simple arch supports. Fourth, the wearing of FO combining medial arch supports and metatarsal dome made positive roles to enhance comfort and functionality and redistribute plantar pressure under the foot. Fifth, for patients with knee-related diseases lateral wedges were preferable. Sixth, measuring systems were properly applied according to the types of foot diseases.