• Title/Summary/Keyword: semiprime

Search Result 126, Processing Time 0.023 seconds

Integer Factorization for Decryption (암호해독을 위한 소인수분해)

  • Lee, Sang-Un;Choi, Myeong-Bok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.221-228
    • /
    • 2013
  • It is impossible directly to find a prime number p,q of a large semiprime n = pq using Trial Division method. So the most of the factorization algorithms use the indirection method which finds a prime number of p = GCD(a-b, n), q=GCD(a+b, n); get with a congruence of squares of $a^2{\equiv}b^2$ (mod n). It is just known the fact which the area that selects p and q about n=pq is between $10{\cdots}00$ < p < $\sqrt{n}$ and $\sqrt{n}$ < q < $99{\cdots}9$ based on $\sqrt{n}$ in the range, [$10{\cdots}01$, $99{\cdots}9$] of $l(p)=l(q)=l(\sqrt{n})=0.5l(n)$. This paper proposes the method that reduces the range of p using information obtained from n. The proposed method uses the method that sets to $p_{min}=n_{LR}$, $q_{min}=n_{RL}$; divide into $n=n_{LR}+n_{RL}$, $l(n_{LR})=l(n_{RL})=l(\sqrt{n})$. The proposed method is more effective from minimum 17.79% to maxmimum 90.17% than the method that reduces using $\sqrt{n}$ information.

RINGS WITH IDEAL-SYMMETRIC IDEALS

  • Han, Juncheol;Lee, Yang;Park, Sangwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1913-1925
    • /
    • 2017
  • Let R be a ring with identity. An ideal N of R is called ideal-symmetric (resp., ideal-reversible) if $ABC{\subseteq}N$ implies $ACB{\subseteq}N$ (resp., $AB{\subseteq}N$ implies $BA{\subseteq}N$) for any ideals A, B, C in R. A ring R is called ideal-symmetric if zero ideal of R is ideal-symmetric. Let S(R) (called the ideal-symmetric radical of R) be the intersection of all ideal-symmetric ideals of R. In this paper, the following are investigated: (1) Some equivalent conditions on an ideal-symmetric ideal of a ring are obtained; (2) Ideal-symmetric property is Morita invariant; (3) For any ring R, we have $S(M_n(R))=M_n(S(R))$ where $M_n(R)$ is the ring of all n by n matrices over R; (4) For a quasi-Baer ring R, R is semiprime if and only if R is ideal-symmetric if and only if R is ideal-reversible.

RIGIDNESS AND EXTENDED ARMENDARIZ PROPERTY

  • Baser, Muhittin;Kaynarca, Fatma;Kwak, Tai-Keun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.157-167
    • /
    • 2011
  • For a ring endomorphism of a ring R, Krempa called $\alpha$ rigid endomorphism if $a{\alpha}(a)$ = 0 implies a = 0 for a $\in$ R, and Hong et al. called R an $\alpha$-rigid ring if there exists a rigid endomorphism $\alpha$. Due to Rege and Chhawchharia, a ring R is called Armendariz if whenever the product of any two polynomials in R[x] over R is zero, then so is the product of any pair of coefficients from the two polynomials. The Armendariz property of polynomials was extended to one of skew polynomials (i.e., $\alpha$-Armendariz rings and $\alpha$-skew Armendariz rings) by Hong et al. In this paper, we study the relationship between $\alpha$-rigid rings and extended Armendariz rings, and so we get various conditions on the rings which are equivalent to the condition of being an $\alpha$-rigid ring. Several known results relating to extended Armendariz rings can be obtained as corollaries of our results.

On Skew Centralizing Traces of Permuting n-Additive Mappings

  • Ashraf, Mohammad;Parveen, Nazia
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • Let R be a ring and $D:R^n{\longrightarrow}R$ be n-additive mapping. A map $d:R{\longrightarrow}R$ is said to be the trace of D if $d(x)=D(x,x,{\ldots}x)$ for all $x{\in}R$. Suppose that ${\alpha},{\beta}$ are endomorphisms of R. For any $a,b{\in}R$, let < a, b > $_{({\alpha},{\beta})}=a{\alpha}(b)+{\beta}(b)a$. In the present paper under certain suitable torsion restrictions it is shown that D = 0 if R satisfies either < d(x), $x^m$ > $_{({\alpha},{\beta})}=0$, for all $x{\in}R$ or ${\ll}$ d(x), x > $_{({\alpha},{\beta})}$, $x^m$ > $_{({\alpha},{\beta})}=0$, for all $x{\in}R$. Further, if < d(x), x > ${\in}Z(R)$, the center of R, for all $x{\in}R$ or < d(x)x - xd(x), x >= 0, for all $x{\in}R$, then it is proved that d is commuting on R. Some more related results are also obtained for additive mapping on R.

ON STRONG REVERSIBLE RINGS AND THEIR EXTENSIONS

  • Baser, Muhittin;Kwak, Tai Keun
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.119-132
    • /
    • 2010
  • P. M. Cohn called a ring R reversible if whenever ab = 0, then ba = 0 for $a,b{\in}R$. In this paper, we study an extension of a reversible ring with its endomorphism. An endomorphism ${\alpha}$ of a ring R is called strong right (resp., left) reversible if whenever $a{\alpha}(b)=0$ (resp., ${\alpha}(a)b=0$) for $a,b{\in}R$, ba = 0. A ring R is called strong right (resp., left) ${\alpha}$-reversible if there exists a strong right (resp., left) reversible endomorphism ${\alpha}$ of R, and the ring R is called strong ${\alpha}$-reversible if R is both strong left and right ${\alpha}$-reversible. We investigate characterizations of strong ${\alpha}$-reversible rings and their related properties including extensions. In particular, we show that every semiprime and strong ${\alpha}$-reversible ring is ${\alpha}$-rigid and that for an ${\alpha}$-skew Armendariz ring R, the ring R is reversible and strong ${\alpha}$-reversible if and only if the skew polynomial ring $R[x;{\alpha}]$ of R is reversible.

A Step-by-Step Primality Test (단계적 소수 판별법)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.103-109
    • /
    • 2013
  • Miller-Rabin method is the most prevalently used primality test. However, this method mistakenly reports a Carmichael number or semi-prime number as prime (strong lier) although they are composite numbers. To eradicate this problem, it selects k number of m, whose value satisfies the following : m=[2,n-1], (m,n)=1. The Miller-Rabin method determines that a given number is prime, given that after the computation of $n-1=2^sd$, $0{\leq}r{\leq}s-1$, the outcome satisfies $m^d{\equiv}1$(mod n) or $m^{2^rd}{\equiv}-1$(mod n). This paper proposes a step-by-step primality testing algorithm that restricts m=2, hence achieving 98.8% probability. The proposed method, as a first step, rejects composite numbers that do not satisfy the equation, $n=6k{\pm}1$, $n_1{\neq}5$. Next, it determines prime by computing $2^{2^{s-1}d}{\equiv}{\beta}_{s-1}$(mod n) and $2^d{\equiv}{\beta}_0$(mod n). In the third step, it tests ${\beta}_r{\equiv}-1$ in the range of $1{\leq}r{\leq}s-2$ for ${\beta}_0$ > 1. In the case of ${\beta}_0$ = 1, it retests m=3,5,7,11,13,17 sequentially. When applied to n=[101,1000], the proposed algorithm determined 96.55% of prime in the initial stage. The remaining 3% was performed for ${\beta}_0$ >1 and 0.55% for ${\beta}_0$ = 1.