• Title/Summary/Keyword: semidiurnal tide

Search Result 37, Processing Time 0.021 seconds

Spatio-temporal Structure of Diurnal and Semidiurnal Tides in Geopotential Height Field (지위고도장의 일주기 및 반일주기 조석의 시공간적 구조)

  • Cho, Hyeong-Oh;Son, Seok-Woo;Lee, Yong-Hee
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.465-475
    • /
    • 2016
  • The diurnal and semidiurnal tides in the global atmosphere are examined using 3-hourly geopotential height field of the state-of-the-art reanalysis data. Unlike the previous studies, the spatial structure and seasonality of those tides are analyzed from the surface of the earth to the stratosphere. It is found that, at most levels, diurnal tide is strong in the midlatitudes while semidiurnal tide is predominant in the tropics. The former shows strong seasonal cycle with a larger amplitude in summer than in winter in both hemispheres. This is different from the semidiurnal tide which has essentially no seasonal cycle. In term of the vertical structure, while semidiurnal tide has a barotropic structure, diurnal tide exhibits a distinct vertical structure with increased amplitude and height. Especially tropical diurnal tide exhibits a nearly opposite phase from the surface to the free troposphere, and to the upper stratosphere. Its amplitude also varies nonlinearly with height, possibly influenced by water vapor, ozone, gravity waves and solar radiation.

Internal Tidal Oscillations of Temperature off Jukbyun on the East Coast of Korea (동해 죽변 연안해역에서 조석주기의 내부수온변동)

  • 이홍재;신창웅
    • 한국해양학회지
    • /
    • v.27 no.3
    • /
    • pp.228-236
    • /
    • 1992
  • Internal temperature oscillations of tidal periods were studied using data observed by a thermistor chain in summer of 1980 off Jukbyun on the mid-east coast of korea. The vertical stratification was well established during the observation period. The spectral energy was found to be predominant in the semidiurnal tidal band and its energy increased with depth with maximum near the bottom. The coherence in the semidiurnal band between different depths is high with a small phase difference. The results suggest the existence of the internal tide of semidiurnal period. The amplitude of internal tide was of the order of 10 m and the largest just before the disappearance of the internal tide signal.

  • PDF

Environmental Factors and Catch Fluctuation of Set Net Grounds in the Coastal Waters of Yeosu - 2 . Sea Water Circulation in the Vicinity of Set Net Ground - (여수연안 정치망어장의 환경요인과 어황 변동에 관한 연구 - 2 . 어장주변 해역의 해수유동 -)

  • Kim, Dong-Soo;Rho, Hong-Kil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.3
    • /
    • pp.142-149
    • /
    • 1994
  • In order to investigate the environmental properties of set net grounds located in the coastal waters of Yeosu. The current in the vicinity of set net grounds was observed by drogue and current meter in 1990 and 1992. The results obtained are summarized as follows: The direction of tidal current at the north enterance of Yeosu bay was southerly in ebb and northwesterly in flood without the distiction of the neap tide and the spring tide. In spring tide the maximum Velocity of the tidal current was 68 cm/sec in ebb and 66 cm/sec in flood. In neap tide the maximum velocity of the tidal current was 37 cm/sec in ebb and 35 cm/sec in flood. And so the direction of residual current was the south ward mainly and 21 cm/sec. The direction of tidal current at set net fishing grounds was southwesterly in ebb and westerly or northwesterly in flood. Regardless of the distinction of neap and spring. The maximum velocity of the current in spring tide was 50 cm/sec in ebb and 40 cm/sec in flood and that in neap was 28 cm/sec in ebb and 25 cm/sec in flood. In spring tide the speed vector along the major axis of semidiurnal tide component was three times as large as diurnal tide. In neap tide, however, the speed vector was about 50% less then that in spring tide, and the semidiurnal tide and diurnal tide were equal in the size of current ellipse and the direction of major axis. The sea area had a southwesterly residual current. 11 cm/sec in spring tide and 7 cm/sec in neap tide. According to the result of drogue tracking, the vicinity of set net fishing ground had a southerly residual current which formed in Yeosu Bay and a weak westerly residual current toward Dolsando from Namhedo. Therefore, set net fishing ground in coastal water of Yeosu was distributed in boundary of inner water which formed from Seamjin river and offshore water supplied from the vicinity of Sorido and Yochido.

  • PDF

Time-series Analysis of Seawater Temperature in the Garolim Bay, the West Coast of Korea (서해 가로림만 수온의 시계열 분석)

  • Yang, Joon-Yong;Cho, Sunghee;Lee, Joon-Soo;Han, Changhoon;Heo, Seung
    • Journal of Environmental Science International
    • /
    • v.30 no.7
    • /
    • pp.585-595
    • /
    • 2021
  • We used seawater temperature data, measured in the Garolim Bay, to analyze temperature variation on an hourly and daily basis. Lagrange's interpolation using before and after data was applied to restore nonconsecutive missing temperature data. The estimated error of the data restoration was 0.11℃. Spectral analyses of seawater temperature showed significant periodicities of approximately 12.4 h (semidiurnal tide) and 15.0 d (long-period tide), which is close to those of M2 and Mf partial tides. Variation in seawater temperature was correlated more with tidal height than with air temperature around the Garolim Bay. In June and December, when the seawater temperature difference between the inside and outside of the Garolim Bay was very large, the periodicities of 12.4 h and 15.0 d were highly prominent. These results indicate that the exchange of seawater between the inside and outside of the Garolim Bay induced variations in seawater temperature owing to tide. Understanding temperature variation because of tide helps to prevent abnormal mortality of cultured fish and to predict seawater temperature in the Garolim Bay.

Tide and Tidal Currents in the Tusima Strait, and the Japan Sea Tides

  • Odamaki, Minoru
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1992.08a
    • /
    • pp.1-4
    • /
    • 1992
  • New cotidal charts of the Tusima Strait has been edited by ODAMAKI (1989a) using tidal current observation data. For the semidiurnal tide as shown in Fig.1, two distinctive features are detected. One is an anti-amphidromic area located in the south coast of Korea. Another is the amplitude gap between west and east coasts of the Tusima.(omitted)

  • PDF

Seasonal Variability of Internal Tides around the Korea Strait: 3-D High-resolution Model Simulation (대한해협주변 내부조석의 계절적 변동성: 3차원 고해상도 모델 연구)

  • Lee, Hyun Jung;Lee, Ho Jin;Park, Jae-Hun;Ha, Ho Kyung
    • Ocean and Polar Research
    • /
    • v.36 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • This study investigates spatial and temporal variations in the generation and propagation of internal tides around the Korea Strait using a three-dimensional high resolution model (Regional Ocean Modeling System; ROMS). The model results were verified through comparison with in-situ current measurements from an array of 12 acoustic Doppler current profilers (ADCPs) deployed in the Korea Strait. Fluxes and distributions of internal tidal energy were calculated using simulation results gathered in February and August. Our analyses reveal that energetic semidiurnal internal tides are generated in a region around the Korea Strait shelf break ($35.5^{\circ}N$, $130^{\circ}{\sim}130.5^{\circ}E$), where the strong cross-slope semidiurnal barotropic tidal currents interact with a sudden topographical change. The semidiurnal internal tidal energy generated in summer displays values about twice as large as values in winter. Propagation of semidiurnal internal tides also reveals seasonal variability. In February, most of the semidiurnal internal tides propagate only into the open basin of the East Sea due to weak stratification in the Korea Strait, which inhibits their southwestward propagation. In August, they propagate southwestward to $35.2^{\circ}N$ along the western channel of the Korea Strait because of strong stratification. In addition, semidiurnal internal tides generated in a region west of Tsushima Island are found to propagate to the coast of Busan. This can be explained by the intensified stratification due to the strong intrusion of bottom cold water in the western channel of the Korea Strait during summer.

Inter-annual Variation of Tides on the Western Coasts of Korea (서해 연안에서 조석특성의 경년변화)

  • Jung, Tae Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.2
    • /
    • pp.81-91
    • /
    • 2016
  • Harmonic analysis of tide data observed on the western coasts has been conducted. The changing trends of harmonic constants were reviewed. Overall, amplitudes of semidiurnal tide are not changed and present phases are faster than in the past. In Mokpo located in a semi-enclosed bay, the amplitudes have been greatly increased and the phases have become earlier due to construction of sea-dike and seawalls. Harmonic constants of diurnal tide have not been changed except Mokpo. In Mokpo the phases of diurnal tide have been earlier. Tidal ranges in spring tide and neap tide have not been significantly changed except Mokpo. In Mokpo tidal ranges have been increased and tidal flats widened. Approximate higher high water has been overall rising. Therefore, Korean western coasts can be easily inundated than before.

Tidal Influence on Physical Parameters and Phytoplankton Size Structure in Youngsan River Estuary during Neap Tide (조석에 따른 영산강 하구의 물리적 환경 및 식물플랑크톤 크기구조: 소조기)

  • Park, Geon-Woo;Lee, Da-Hye;Shin, Yongsik
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.325-334
    • /
    • 2017
  • To understand the changes in physical parameters and phytoplankton size structure caused by tides, a fixed station in the Youngsan River estuary was monitored at 2-h intervals, on April 28, 2012 and August 12, 2012. No clear relationship was observed between the temperature and salinity changes and tidal levels in April. However, in August, temperature decreased during the ebb tide and increased during the flood tide, while salinity showed the opposite trend. In addition, there was no specific change in the phytoplankton biomass corresponding to tidal levels in April. In August, the total chlorophyll a and the biomass of net phytoplankton (>$20{\mu}m$) increased almost 20 times during the ebb tide and decreased during the flood tide. The biomass of nanophytoplankton (<$20{\mu}m$) showed a similar variation in response to tidal level changes. In April, the relationship between percent contributions of phytoplankton size structure and tidal levels was not clear. In August, the net phytoplankton was dominant in the early stage and nanophytoplankton was dominant in the later stage, while contribution of nanophytoplankton and net phytoplankton increased at high tide and low tide, respectively. Therefore, in April, other factors such as freshwater discharge were more important than the tide, whereas in August, when no freshwater discharge was recorded, the changes in semidiurnal tides influenced the physical parameters and phytoplankton dynamics. These results could contribute to the understanding of phytoplankton dynamics in the Youngsan River estuary.

A Numerical Experiment On Tidal Currents In Asan Bay

  • Ahn, Hui Soo;Lee, Suk Woo
    • 한국해양학회지
    • /
    • v.11 no.1
    • /
    • pp.18-24
    • /
    • 1976
  • The distribution of tidal currents in Asan Bay was simulated by a numerical experiment. A homogeneous and single layer model with bottom stress taken into account was used. Although the effective configuration of the bay differs significantly between the high tide and the low tkde, its form is assumed to be fixed as a first approximation. The advective term is particularly large because the tidal range of 810cm is large compared to the depth and the changes of velocities occur abruptly. The results of calculations agree fairly well with the observations. For example, the tidal range at Manhoriis amplified 15cm higher and the phase lag is five minutes later than at the mouth of the bay. It also can generally be said that, with the semidiurnal tide at the mouth of the bay, the tidal range is increased toward the inner corner and that tidal currents are found to be large at the deeper part of the bay.

  • PDF

Current Systems in the Adjacent Seas of Jeju Island Using a High-Resolution Regional Ocean Circulation Model (고해상도 해양순환모델을 활용한 제주도 주변해역의 해수유동 특성)

  • Cha, Sang-Chul;Moon, Jae-Hong
    • Ocean and Polar Research
    • /
    • v.42 no.3
    • /
    • pp.211-223
    • /
    • 2020
  • With the increasing demand for improved marine environments and safety, greater ability to minimize damages to coastal areas from harmful organisms, ship accidents, oil spills, etc. is required. In this regard, an accurate assessment and understanding of current systems is a crucial step to improve forecasting ability. In this study, we examine spatial and temporal characteristics of current systems in the adjacent seas of Jeju Island using a high-resolution regional ocean circulation model. Our model successfully captures the features of tides and tidal currents observed around Jeju Island. The tide form number calculated from the model result ranges between 0.3 and 0.45 in the adjacent seas of Jeju Island, indicating that the dominant type of tides is a combination of diurnal and semidiurnal, but predominantly semidiurnal. The spatial pattern of tidal current ellipses show that the tidal currents oscillate in a northwest-southeast direction and the rotating direction is clockwise in the adjacent seas of Jeju Island and counterclockwise in the Jeju Strait. Compared to the mean kinetic energy, the contribution of tidal current energy prevails the most parts of the region, but largely decreases in the eastern seas of Jeju Island where the Tsushima Warm Current is dominant. In addition, a Lagrangian particle-tracking experiment conducted suggests that particle trajectories in tidal currents flowing along the coast may differ substantially from the mean current direction. Thus, improving our understanding of tidal currents is essential to forecast the transport of marine pollution and harmful organisms in the adjacent seas of Jeju Island.