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ABSTRACT

The distribution of tidal currents in Asan Bay was simulated by a numerical experiment.

A homogeneous and single layer model with bottom stress taken into account was used. Althuogh

the effective configuration of the bay differs significantly between the high tide and the low tide,

its form is assumed to be fixed as a first approximation.

The advective term is particularly large because the tidal range of 810 c¢m is large compared to

the depth and the changes of velocities occur abruptly.

The results of calculations agree fairly well with the observations. For example, the tidal range

at Manhoriis amplified 15cm higher and the phase lag is five minutes Jater than at the mouth of

the bay. It also can generally be said that, with the semidiurnal tide at the mouth of the bay, the

tidal range is increased toward the inner corner and that tidal currents are found to be large at

the deeper part of the bay.

INTRODUCTION

In most cases of numerical computation for
tidal waves travelling over the oceans, a linear
model with bottom stress neglected and with
the tide-generating potential given on the sur-
face of the oceans has proved to be satisfactory
(e.g. Ueno, 1963). However, in a small bay
tidal velocities become large and abruptly
change from place to place, so that the role of
the non-linear term increases, while the effect
of the coriolis term decreases and the bottom
stress term can not be neglected because of the
shallow depth.

Asan Bay, which is located at the central
part of the west coast of Korea, has about 100
km? of area at flood tide and 50 km? at ebb
tide. The average depth of the whole bay is
five meters, its deepest part near the mouth of

the bay being 20 meters.

Not many observations of tides in or around
Asan Bay have been made, but recently the
Korea Ocean Science & Engineering Corporation
Lee, Suk Woo, Rep.) recorded tides at Nomi
tidal station for two months and at Manhori
tidal station for one month. The harmonic
constants of the main four tidal components
observed at Manhori and Nomi are shown in
table 1.

In order to simulate the tidal current distribu-
tion of Asan Bay with a {inite difference
method, a grid spacing of 0.5by 0.5 km was
uscd.

Fig.]1 shows the bay, the form of which is
assumed to be fixed as indicated by the gothic
line. We put the points of depth at the centers
of the lattices, and calculate the model depth
under the following considerations: first, the
volume of the model is almost the same as that

of the bay: second, for the sake of convenience
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Fig. 1. Topography of Asan Bay. The thick line
indicates the boundary of the model which is
divided to meshes of 0.5 by 0.5km. The
dashed line shows the boundary of beach at
ebb tide.

Table 1. The harmonic constants of the main four
tidal components observed at Manhori and

Nomi.
.(37°00°00”'N .(36°57°40"'N
\ Nom'(126°46’52”E> l Manhor'(126°50’50”E>
| Heem KC) | Hem)  K()
M. 290.6 127.6 299.5 131.6
S, 115.0 17577 116.8 178.8
K, 37.0 306.0 38.5 305.6
0O, 28.4 262.2

259.8 27.2

of calculation, the depth will be taken one
meter deeper than the datum level at the points
in the beach at ebb tibe in order to keep them
under water: third, the water transports flow
only through the mouth of the bay and the
runof{ from the strcams f{lowing into the bay
is neglected.

The purpose of the present study is to calc-
ulate the distribution of tidal currents in the

bay by means of the numerical experiment.

THE METHOD OF CALCULATION

A. Fundamental equations.

A homogencous, non-linear and single laycr
model was used. The fundamental equations of
the tides are as {ollows, Equations of motion,
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Equation of continuity,
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Fig. 2. The coordinate system.

We adopt the right handed coordinate system
shown in Fig. 2, where the z coordinate is
positive downward. The symbols of variables
used in the above equations are;

u,v,w; velocity components in the z,y,z dir-
ections.

f; coriolis parameter, f=2%2 sing where £ is
the angular velocity of the carth and ¢
is latitude.

p; density of sea water.

Av, Al; vertical and larteral turbulent viscosity
cocfficients.

P pressure.

g; gravity acceleration.
V5 horizontal Laplacian.

If we neglect the acceleration of w in equation
(3) (hydrostatic approximation), pressure can
be expressed by using the elevation & from the
mean sea level. Accordingly the pressure term

in equations (1) and (2) is given as
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1
= Vp=—gVh.
P, P gva

If we integrate the equation (1), (2) and (4
from sea surface to bottom, the cquations for
the transport M and N are given by;

oM

e = "g(d+h)—?éA+T’;—T;+fN
~(d+h [— o+ aa”v } +AIVEM (5)

oN

= ~gw+@ﬁ~+T’ 13—f/M
—(d+h) l-al‘i i } IVIN (6)
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(T%, TP and (T3, T3 are the z—y compone-

nts of the frictional stress at the surface and
the bottom respectively. Here, we neglect the
surface stress. On the other hand, bottom stress
is taken into conmsideration by the following

formula,
Tp=pr} V(V), here
w,vo

where the bottom ({rictional coefficient ;2 is

taken to be 0, 0026.

Te=(T:, Tp, V=

B. Finite difference equation.
We transform the equations (5), (6) and (7)
into finite difference equations by using the

following transformation and putting dz=Ady=4s,

SX= Mf& ~(d+h>u

We use the forward method for time dependent
term and the centered method for space. The

lattices of finite difference and the disposition

of variables are indicated in Fig.3. The depth
V(krﬂ)
Yip
e 14 X -
851 i i [t
RN I, _,
Vi, j) (i)
AS

Fig. 3. The positions of variables of the meshes.

d and the clevation 4 are put at the centers
of lattice squares and SX, u and SY, v are put
in the mid points of the sides of the lattices
squares. The finite difference equations of SX,
SY and 4 are as follows,

The expression hx and by means the averages
of two neighboring points of h as follows,

ha(, )= (h(i, ) +hG—1,)

k3G, =4 (h(i, D+ hGE, = 1)
This is same form. In equations (8), (9) and
(10), the left hand terms are at time z+1 and
the right hand terms are at time t. We calculate

new values at £4+1 from SX, SY, » andvatt.
Following equations of AX and AY are the

finite difference analogues of the inertial term,

SXA1G, H=SX1Gi, ) =~ e ) WG, )+ K= 1, )+ 242G, )+ G, )~ G=1,0) —re( )

(i, ) \/tuf<i,j>2+{(v*(i,n+vf<i—1,j>+v'<i»1, D vt/ sy

G+ SYG—1,) 4 SYG— L i+ D+ SV, i+ DI+ G5 Tr AXG ) ®

5 (41)2

Sy, H=SY'G, J)—~2 \ Wi ) Ch'G, D +R G i—1)+2dyG D) « RED -G j-DI—1r"—4

oG,/ WG DAL, DS G D 4w G4 1, 1)/8) 5+ i, ) —-L5 - (5"

Gy 4 SXG+1, D 4-SKIG, = 1) +SXG+1, 7= D) + -T2 4+ A1, D) ©

B, 5y =htG, ) —SXUG+1, )+ 8K, D= SY' G, j+ D+ SYIE D

1o
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AXG =34 Y G +hG-1,)
+2dx(8,)) (w41, H—ulG—1,1))
(uG+1,D+2ul@.DN+uE—1, 1)

+ @i+ 1)+ ul )@@+ 1D

+v(E=1,i+10)~ (@) +ul,j—1)

(w(@:8) +o(i—1,)} an

AY Gy =4 (L i +hGi~ D+
\ ds /

2dy(E, ) ([(u(@+1, ) +uli+1,7—-1))

@(E+1, 1)+ v(E.g)) ~ (i f)

+u(i,j-1))(@E) +v(i-1,7))

+ @@+ vl - 1D @E+ 1D

+2v(%,5) +v(@,i— 1)) az
There is no horizontal mixing term in equat-
ions (9) and (10). The cffect of horizontal
mixing is included in the smoothing process.
The cquations of smoothing are as follows,

SX(EH=0—-4AD)SX(&, )+ D{SX(G+1, )
+SXGE,j+ 1D +SXGE-1,1
+8X(#,5-1))) a3

SYE, ) =Q—d4D)SYE D+ DSYE+L, 1)
+SY(@, i+ D+SYG-1,1)
+S8Y(E,i—1)} a4

wheie D is a smoothing coefficient which is
equal to Al14¢/(4ds)2. Finally, the mean velocities
u and v averaged from surface to bottom are

given by.

Wi ) =4 SX o) /5 (BG4 hGi—1, j

+2dz(4,5)) (15
V() = SY o) 4 (i) +h(Ei—1)
+2dy(i,5)) (16)
In the above calculations, the following constants
are used:
f=8.364x107* sec™!
e=1 greem™3

Al=10° cm?-sec”!

£=9.8x 10%cm-sec™?

C. Initial and boundary conditions.

At the initial
variables SX, SY, %, v, etc. are set to zero.

step of the calculation, all

On the boundary, the non-slip condition that
the velocities parallel and perpendicular to the
boundary are zero is satisfied, that is, M=N=
0. The variables Jocated on the shore line are
all zero as shown in Fig. 4.

Land

Uli, j)=0
Seaq

f i :
vu—u,j)_l+ Vi, j)
Uii,j==0

—_—
i

Fig. 4. The boundary condition. The variables on the
boundary are zero. But the place of V(i-1,j)
which is just inside the boundary must be
changed into the negative value of V(i,j).

SXE,D=u(i,j)="-=0.
Variables on the land(d=0) are also zero. But
the calculation of smoothing and non-linear
terms needs the values of variables on the land
which are not zero. That is, in Fig. 4, SY
G-1,p=-8YG.5, v@E-1Lp=-v{i,i), in
order to satisfy the viscous boundary condition.

Here, it is important to decide the length of
the time interval 4¢ compared to the space int-
erval 4s. Among possible waves, the gravity
wave is the fastest transmitting phenomenon in

this case. So the condition of stability +3gH

»§%<1 must be satisfied (e.g. Ueno, 1964)

where H is the greatest depth. If we assume
20 meters for H and 0.5 km for 4s, then the
time interval 4¢ must be less than 25 scconds.
In the present computation we use 1) s:eonds
for 4dt.

The tidal problem in a small bay is treated
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as a boundary value problem. The tidal record
at Nomi station will be used as a boundary
condition at the mouth of the bay because Nomi
is very near the mouth of the bay. The chara-

cteristic feature of the tide observed at Nomi

Hi+Ho _
T £ =016), S0

the tidal variation may be assumed to be a

is nearly semi-diurnal (

semi-diurnal sinusoidal curve with amplitude

(Hm+ Hs) as a a first approximation, that is,

the tidal elevation h is A=405, Osin:%-T+t>‘
Here, T is the lunar time and t is the starting
time of the computation. Onec tidal period is
approximated 12 hours.

D. The proccdure of calculation.

According to the finite difference cquations
®, (@, (10), (15) and (16), we can calcu-
late SX, SY, u, v and h. But strictly speaking,
the elevation h is computed at times 1/2 time
step before SX and SY. The following diagram

shows the procedure of calculation.

step ¢£—1 step ¢ step ¢+1
S o .
i ! 1 I ! l I 1
X X X X - X ——— X
SX (1) h SX(u) B SX(w) h
SY(v) SY() SY(v)

Although all terms of the equations of motion
must be calculated in every time step, the terms
except the local derivative and the pressure
term are put into the calculation every five time
steps because they have a small effect compared
to these two terms and to calculate all terms
in every time step consumes too much computer
time. The calculation is allowed to proceed until

it becomes stable.

RESULTS AND DISCUSSION

The time change of transport through the
mouth of the bay is shown in Fig. 5. We can

see that the calculation becomes stable after
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. Fig. 5. The change of volume transport through the

mouth of the bay. The units of vertical
coordinate amount to 10% ms3.

three tidal periods since the curve of the third

period almost resembles that of the fourth
period.

Fig. 6 shows the distribution of tidal currents
at the high, low and mid tides in the fourth

period. The arrows indicates the vectors of
tidal currents. The largest vector in the central
part of the distribution diagram of 45 hours
The tidal currents at
high and low tides are larger than at mid tides.

As expected, the result shows that the larger

amounts to 318 cmm/scc.

velocities are in the deeper part of the bay.

39h

1400 ¢H) M

~(4004M) CM

Fig. 7. Topography of the sea surface corresponding
to fig.6.
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Fig. 6. The distribution of velocity vectors in fourth tidal period. The largest arrow in the figure

of 45 hours amounts to 318 cm/sec.

But the extremely large values of velocities in
the central and left upper paris of the 45 hour-
diagram must be neglected, as they are outcomes
of computational modes.

Fig. 7 is the contour diagram of the surface
at the same time as fig. 6. We can easily see
that the propagation of tides in the bay takes
place as gravity waves because the contour lines
are perpendicular to the axis of the bay. The
phase lag which is attributed to the bottom
topography is about 25 minutes between the
mouth and the innermost corner.

Fig. 8 shows the tidal level variation at

Manhori. The phase lag is five minutes and

the tidal range is 825 cm which is amplified 15
cm higher than at the mouth of the bay.
Although this amplified value is five centimeters
smaller than the tidal range observed at Man-
hori tidal station, it agrees well with the obs-
ervations considering the assumption that the
tide at Nomi station, located outside of the
bay, was used as a boundary condition at the
mouth. The degree of amplification tends to
increase toward the inner corner.

Fig. 9 shows the tidal current ellipses at
two points A and B which are 1.5 km apart
{from each other betwcen Manhori and Hyang-

dam island (cf. Fig. 1). The centers of ellipses
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Fig. 8. The computed tital change at Manhori.

move -30cm/sec at point A and 20cm/scc at
point B from ecach origin. This indicates a
clockwise circulation in the bay. Generally the
amount of tidal residual circulation is several
percent of the tidal current in the ocean. It is
uncertain whether this circulation is really the
residual one or not because the order is very
the tidal

calculation does not become stable yct so that

large compared to current. The
the curves of the ellipses are not smooth. Com-
paring the results of the first, second, third

and fourth periods, it can be said that it would

cm/sec
cm/sec 710G
o (A) 150 (8)
.Oh
\
150
n
S0 3h 50
Sh
-50 50 30 50
-Gh
-50 6h

-100¢

Fig. 9. The current ellipses at two points A and B.

become stable and the tendency would be the

same if we continued for more times.
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