• 제목/요약/키워드: semiconductors

검색결과 968건 처리시간 0.035초

태양광 모듈 시스템의 에너지 변환을 위한 전력 반도체에 관한 리뷰 (A Brief Review of Power Semiconductors for Energy Conversion in Photovoltaic Module Systems)

  • 박형기;김도영;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제37권2호
    • /
    • pp.133-140
    • /
    • 2024
  • This study offers a comprehensive evaluation of the role and impact of advanced power semiconductors in solar module systems. Focusing on silicon carbide (SiC) and gallium nitride (GaN) materials, it highlights their superiority over traditional silicon in enhancing system efficiency and reliability. The research underscores the growing industry demand for high-performance semiconductors, driven by global sustainable energy goals. This shift is crucial for overcoming the limitations of conventional solar technology, paving the way for more efficient, economically viable, and environmentally sustainable solar energy solutions. The findings suggest significant potential for these advanced materials in shaping the future of solar power technology.

Some Peculiarities of Photo-structural Transformations in Amorphous Chalcogenide Glassy Semiconductor Films

  • Prikhodko, O.;Almasov, N.;Korobova, Natalya
    • Journal of information and communication convergence engineering
    • /
    • 제9권5호
    • /
    • pp.587-590
    • /
    • 2011
  • The absence of deep traps for electrons in the spectrum of $As_{40}Se_{30}S_30$ localized states films obtained by ion sputtering was determined. Bipolar drift of charge carriers was found in amorphous $As_{40}Se_{30}S_30$ films of chalcogenide glassy semiconductors, obtained by ion-plasma sputtering of high-frequency, unlike the films of these materials obtained by thermal evaporation.

Photocatalytic Decompositions of Carboxylic Acid Derivatives by Semiconductors

  • Koon Ha Park;Jung Hae Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권4호
    • /
    • pp.438-440
    • /
    • 1991
  • Each aqueous solution (pH = 1) of acetic acid, acetamide, and acetonitrile produces carbon dioxide and hydrogen at 300 K when irradiated in the presence of semiconductors such as titanium dioxide, platinized titanium dioxide, etc. Similar results were obtained for each of benzoic acid, benzamide, and benzonitrile. Based on the relative amount of carbon dioxide, nitrile is believed to be transformed into carboxylic acid through the intermediacy of amide. A mechanism in which hydrogen atom and hydroxyl radical are involved is presented.

Boosting up the photoconductivity and relaxation time using a double layered indium-zinc-oxide/indium-gallium-zinc-oxide active layer for optical memory devices

  • Lee, Minkyung;Jaisutti, Rawat;Kim, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.278-278
    • /
    • 2016
  • Solution-processed metal-oxide semiconductors have been considered as the next generation semiconducting materials for transparent and flexible electronics due to their high electrical performance. Moreover, since the oxide semiconductors show high sensitivity to light illumination and possess persistent photoconductivity (PPC), these properties can be utilized in realizing optical memory devices, which can transport information much faster than the electrons. In previous works, metal-oxide semiconductors are utilized as a memory device by using the light (i.e. illumination does the "writing", no-gate bias recovery the "reading" operations) [1]. The key issues for realizing the optical memory devices is to have high photoconductivity and a long life time of free electrons in the oxide semiconductors. However, mono-layered indium-zinc-oxide (IZO) and mono-layered indium-gallium-zinc-oxide (IGZO) have limited photoconductivity and relaxation time of 570 nA, 122 sec, 190 nA and 53 sec, respectively. Here, we boosted up the photoconductivity and relaxation time using a double-layered IZO/IGZO active layer structure. Solution-processed IZO (top) and IGZO (bottom) layers are prepared on a Si/SiO2 wafer and we utilized the conventional thermal annealing method. To investigate the photoconductivity and relaxation time, we exposed 9 mW/cm2 intensity light for 30 sec and the decaying behaviors were evaluated. It was found that the double-layered IZO/IGZO showed high photoconductivity and relaxation time of 28 uA and 1048 sec.

  • PDF

산화물 반도체의 다양한 처리를 통한 박막트랜지스터의 전기적 특성 향상 (A Review : Improvement of Electrical Performance in the Oxide Semiconductor Thin Film Transistor Using Various Treatment)

  • 김태용;장경수;;;이소진;강승민;;이윤정;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제29권1호
    • /
    • pp.1-5
    • /
    • 2016
  • The ultimate aims of display market is transparent or flexible. Researches have been carried out for various applications. It has been possible to reduced the process steps and get good electrical properties for semiconductors with large optical bandgaps. Oxide semiconductors have been established as one of the leading and promising technology for next generation display panels. In this paper, alternative treatment processes have been tried for oxide semiconductors of thin film transistors to increase the electrical properties of the thin film transistors and to investigate the mechanisms. There exist a various oxide semiconductors. Here, we focused on InGaZnO, ZnO and InSnZnO which are commercialized or researched actively.

가시광 수중 무선통신을 위한 이종접합 유기물 반도체 기반 고감도 포토트랜지스터 연구 (Photo-Transistors Based on Bulk-Heterojunction Organic Semiconductors for Underwater Visible-Light Communications)

  • 이정민;서성용;임영수;백강준
    • 한국전기전자재료학회논문지
    • /
    • 제36권2호
    • /
    • pp.143-150
    • /
    • 2023
  • Underwater wireless communication is a challenging issue for realizing the smart aqua-farm and various marine activities for exploring the ocean and environmental monitoring. In comparison to acoustic and radio frequency technologies, the visible light communication is the most promising method to transmit data with a higher speed in complex underwater environments. To send data at a speedier rate, high-performance photodetectors are essentially required to receive blue and/or cyan-blue light that are transmitted from the light sources in a light-fidelity (Li-Fi) system. Here, we fabricated high-performance organic phototransistors (OPTs) based on P-type donor polymer (PTO2) and N-type acceptor small molecule (IT-4F) blend semiconductors. Bulk-heterojunction (BHJ) PTO2:IT-4F photo-active layer has a broad absorption spectrum in the range of 450~550 nm wavelength. Solution-processed OPTs showed a high photo-responsivity >1,000 mA/W, a large photo-sensitivity >103, a fast response time, and reproducible light-On/Off switching characteristics even under a weak incident light. BHJ organic semiconductors absorbed photons and generated excitons, and efficiently dissociated to electron and hole carriers at the donor-acceptor interface. Printed and flexible OPTs can be widely used as Li-Fi receivers and image sensors for underwater communication and underwater internet of things (UIoTs).

Chemical Vapor Deposition 공정으로 제작한 CuI p-type 박막 트랜지스터 (p-type CuI Thin-Film Transistors through Chemical Vapor Deposition Process)

  • 이승민;장성철;박지민;윤순길;김현석
    • 한국재료학회지
    • /
    • 제33권11호
    • /
    • pp.491-496
    • /
    • 2023
  • As the demand for p-type semiconductors increases, much effort is being put into developing new p-type materials. This demand has led to the development of novel new p-type semiconductors that go beyond existing p-type semiconductors. Copper iodide (CuI) has recently received much attention due to its wide band gap, excellent optical and electrical properties, and low temperature synthesis. However, there are limits to its use as a semiconductor material for thin film transistor devices due to the uncontrolled generation of copper vacancies and excessive hole doping. In this work, p-type CuI semiconductors were fabricated using the chemical vapor deposition (CVD) process for thin-film transistor (TFT) applications. The vacuum process has advantages over conventional solution processes, including conformal coating, large area uniformity, easy thickness control and so on. CuI thin films were fabricated at various deposition temperatures from 150 to 250 ℃ The surface roughness root mean square (RMS) value, which is related to carrier transport, decreases with increasing deposition temperature. Hall effect measurements showed that all fabricated CuI films had p-type behavior and that the Hall mobility decreased with increasing deposition temperature. The CuI TFTs showed no clear on/off because of the high concentration of carriers. By adopting a Zn capping layer, carrier concentrations decreased, leading to clear on and off behavior. Finally, stability tests of the PBS and NBS showed a threshold voltage shift within ±1 V.

전력반도체 응용을 위한 용액 공정 인듐-갈륨 산화물 반도체 박막 트랜지스터의 성능과 안정성 향상 연구 (Solution-Processed Indium-Gallium Oxide Thin-Film Transistors for Power Electronic Applications)

  • 김세현;이정민;;김민규;정유진;백강준
    • 한국전기전자재료학회논문지
    • /
    • 제37권4호
    • /
    • pp.400-406
    • /
    • 2024
  • Next-generation wide-bandgap semiconductors such as SiC, GaN, and Ga2O3 are being considered as potential replacements for current silicon-based power devices due to their high mobility, larger size, and production of high-quality wafers at a moderate cost. In this study, we investigate the gradual modulation of chemical composition in multi-stacked metal oxide semiconductor thin films to enhance the performance and bias stability of thin-film transistors (TFTs). It demonstrates that adjusting the Ga ratio in the indium gallium oxide (IGO) semiconductor allows for precise control over the threshold voltage and enhances device stability. Moreover, employing multiple deposition techniques addresses the inherent limitations of solution-processed amorphous oxide semiconductor TFTs by mitigating porosity induced by solvent evaporation. It is anticipated that solution-processed indium gallium oxide (IGO) semiconductors, with a Ga ratio exceeding 50%, can be utilized in the production of oxide semiconductors with wide band gaps. These materials hold promise for power electronic applications necessitating high voltage and current capabilities.