• Title/Summary/Keyword: semiconductor equipment industry

Search Result 97, Processing Time 0.027 seconds

Damage and Failure Characteristics of Semiconductor Devices by ESD (ESD에 의한 반도체소자의 손상특성)

  • 김두현;김상렬
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.62-68
    • /
    • 2000
  • Static electricity in electronics manufacturing plants causes the economic loss, yet it is one of the least understood and least recognized effects haunting the industry today. Today's challenge in semiconductor devices is to achieve greater functional density pattern and to miniaturize electronic systems of being more fragile by electrostatic discharges(ESD) phenomena. As the use of automatic handling equipment for static-sensitive semiconductor components is rapidly increased, most manufacturers need to be more alert to the problem of ESD. One of the most common causes of electrostatic damage is the direct transfer of electrostatic charge from the human body or a charged material to the static-sensitive devices. To evaluate the ESD hazards by charged human body and devices, in this paper, characteristics of electrostatic attenuation in domestic semiconductor devices is investigated and the voltage to cause electronic component failures is investigated by field-induced charged device model(FCDM) tester. The FCDM simulator provides a fast and inexpensive test that faithfully represents ESD hazards in plants. Also the results obtained in this paper can be used for the prevention of semiconductor failure from ESD hazards.

  • PDF

Fault Detection in the Semiconductor Etch Process Using the Seasonal Autoregressive Integrated Moving Average Modeling

  • Arshad, Muhammad Zeeshan;Nawaz, Javeria Muhammad;Hong, Sang Jeen
    • Journal of Information Processing Systems
    • /
    • v.10 no.3
    • /
    • pp.429-442
    • /
    • 2014
  • In this paper, we investigated the use of seasonal autoregressive integrated moving average (SARIMA) time series models for fault detection in semiconductor etch equipment data. The derivative dynamic time warping algorithm was employed for the synchronization of data. The models were generated using a set of data from healthy runs, and the established models were compared with the experimental runs to find the faulty runs. It has been shown that the SARIMA modeling for this data can detect faults in the etch tool data from the semiconductor industry with an accuracy of 80% and 90% using the parameter-wise error computation and the step-wise error computation, respectively. We found that SARIMA is useful to detect incipient faults in semiconductor fabrication.

Study on Design of high Efficient Cooling System for Low Temperature Furnace in Semiconductor Processing (반도체 공정용 저온 열처리로의 고효율 냉각시스템 설계에 관한 연구)

  • Jeoung, Du-Won;Suh, Ma-Son;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.71-76
    • /
    • 2010
  • According to recent changes in industry for semiconductor devices, a low-temperature treatment has become a necessity. These changes relate to size refinement and the development of new materials. While variation in cooling efficiency does not affect the yield when using a high-temperature treatment, uniform cooling efficiency is necessary avoid "inconsistencies/bends" in low temperature treatments. However it is difficult to increase temperature stabilization in low temperature treatments. In this paper, using CFD (Computer Fluid Dynamics), we analyze and manipulate the design and input of the low-temperature system to attempt to control for temperature variations within the quartz tube, of which airflow appears to be a predominant factor. This simulation includes variable inputs such as airflow rate, head pressure, and design manipulations in the S.C.U. (Super Cooling Unit).

A Study on the Development of Qualification for Semiconductor Machine Maintenance (반도체장비유지보수 자격개발에 관한 연구)

  • Kang, Seok-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2472-2478
    • /
    • 2012
  • This research is aiming to develop Semiconductor equipment maintenance certification course to train qualified maintenance experts more effectively requested in related semiconductor industry. In the course of research, we adopted diverse research technique such as interview, on-spot investigation, documentary references to analyze current status of related training facilities, and forecast the population of test applicants. We analyzed similar certification course(Craftsman SMT, Industrial Engineer SMT, Craftsman Mechatronics, Industrial Enginee Mechatronics, et) as reference to set up job objectives and curriculum of semiconductor equipment maintenance certification. We conducted survey on expectations on newly created certificate, presented evaluation standard and objective of test, and preliminary writing test and demonstration test. Based on the result of various research, we were able to present training program for semiconductor equipment maintenance certification and set the assessment standard of qualification exam.

Physicochemical Characterization of Powder Byproducts Generated from a Metallization Process and Its 1st Scrubber in the Semiconductor Industry (반도체 메탈공정 및 1차 스크러버에서 생성되는 파우더 부산물의 물리화학적 특성분석)

  • Choi, Kwang-Min;Jung, Myung-Koo;An, Hee-Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.3
    • /
    • pp.294-300
    • /
    • 2015
  • Objectives: The aim of this study is to identify physicochemical properties such as chemical composition, size, shape and crystal structure of powder byproducts generated from a metallization process and its 1st scrubber in the semiconductor industry. Methods: Powder samples were collected from inner chambers during maintenance of the W-plug process equipment (using tungsten hexafluoride as a precursor material) and its 1st scrubber. The chemical composition, size and shape of the powder particles were determined by field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) equipped with an energy dispersive spectroscope (EDS). The crystal structure of the powders was analyzed by X-ray diffraction (XRD). Results: From the SEM-EDS and TEM-EDS analyses, O and W were mainly detected, which indicates the powder byproducts are tungsten trioxide ($WO_3$), whereas Al, F and Ti were detected as low peaks. The powder particles were spherical and nearly spherical, and the particle size collected from the process equipment and its 1st scrubber showed 10-20 nm (agglomerates: 55-90 nm) and 16-20 nm (agglomerates: 80-120 nm) as primary particles, respectively. The XRD patterns of the yellow powder byproducts exhibit five peaks at $23.8^{\circ}$ $33.9^{\circ}$ $41.74^{\circ}$ $48.86^{\circ}$ and $54.78^{\circ}$ which correspond to the (200), (220), (222), (400), and (420) planes of cubic $WO_3$. Conclusions: We elucidated the physicochemical characteristics of the powder byproducts collected from W-plug process equipment and its 1st scrubber. This study should provide useful information for the development of alternative strategies to improve the working environment and workers' health.

The Process and Its Influencing Factors of Technological Capability Building: A Small and Medium-Sized Semiconductor Equipment Manufacturer (기술능력의 축적과정 및 영향요인에 대한 연구: 중소 반도체 장비 제조업체를 중심으로)

  • Kim, Wang-Dong;Kim, Linsu
    • Knowledge Management Research
    • /
    • v.3 no.2
    • /
    • pp.49-70
    • /
    • 2002
  • The purpose of this study is to investigate the process and its influencing factors of technological capability building in a small and medium-sized capital goods sector. This paper first reviews the influencing factors of accumulating technological capability-technology trajectory, technology sources, technological capability, technological learning, technology strategy, and entrepreneurship. The paper then presents the integrative model of technological capability building. The experience of Mirae Corporation, the first generation of venture company in Korea, is also discussed as a case in point to analyse the process of technological capability building in a small and medium-sized capital goods company. Finally, the implications and limitations of the study arc discussed.

  • PDF

A Study on How to Predict and Evaluate the Dynamic Stiffness Criteria of Exposure Equipment in Precision Industrial Factory(TFT-LCD) (정밀산업(TFT-LCD) 공장 내 노광장치의 대형 세대별 동강성 허용규제치 예측 및 평가에 관한 연구)

  • Baek, Jae-Ho;Chun, Chong-Keun;Park, Sang-Gon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.15-20
    • /
    • 2011
  • The lithography system installed inside precision industry's (e.g. TFT-LCD) production factories are increasing in size, thereby increasing its dynamic load along with it. Such condition causes vibration within the area where the system is installed, which then negatively affects the production line to produce defective products. To prevent this type of situation, the facilities should adopt dynamic design that considers the lithography system's dynamic load. This study predicts the maximum value allowed for dynamic stiffness (which is a ratio of vibration response against a single unit of the dynamic load) of the lithography system and explains the result of its application on actual structures inside the facilities.

Solar Cell Classification using Gaussian Mixture Models (가우시안 혼합모델을 이용한 솔라셀 색상분류)

  • Ko, Jin-Seok;Rheem, Jae-Yeol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.1-5
    • /
    • 2011
  • In recent years, worldwide production of solar wafers increased rapidly. Therefore, the solar wafer technology in the developed countries already has become an industry, and related industries such as solar wafer manufacturing equipment have developed rapidly. In this paper we propose the color classification method of the polycrystalline solar wafer that needed in manufacturing equipment. The solar wafer produced in the manufacturing process does not have a uniform color. Therefore, the solar wafer panels made with insensitive color uniformity will fall off the aesthetics. Gaussian mixture models (GMM) are among the most statistically mature methods for clustering and we use the Gaussian mixture models for the classification of the polycrystalline solar wafers. In addition, we compare the performance of the color feature vector from various color space for color classification. Experimental results show that the feature vector from YCbCr color space has the most efficient performance and the correct classification rate is 97.4%.

Cooling Analysis of Super Precision and Large Stage for OLED

  • Kim, Bo-Seon;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.51-55
    • /
    • 2018
  • As the OLED industry develops, display equipment is becoming larger. As a result, the stage required for display equipment is getting bigger. This enlargement led to increase in OLED production and industrial development. However, due to the large scale of the stage, other problems due to overheating and overheating caused by heavy load on the linear motor, which is mainly used in the stage, must be solved. In this study, a linear motor equipped with a cooling channel is modeled and the three - dimensional heat conduction flow analysis for this model is simulated using Fluent to analyze the cooling efficiency and cooling efficiency according to the cooling water flow rate. As a result, the cooling channel was effective and the cooling effect and efficiency were the best when the flow rate was about 5 ~ 10 L./min. In addition, the cooling effect is increased when the flow rate is increased, but the efficiency is significantly lowered when the flow rate is more than the predetermined value.

Research Trends of Scheduling Techniques for Domestic Major Industries (국내 주요 산업별 스케줄링 기법의 연구동향)

  • Lee, Jae-yong;Shin, Moonsoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.59-69
    • /
    • 2018
  • The up-to-date business environment for Korean manufacturers is very complex and rapidly changing. Especially, the companies have faced with various changes derived from small quantity batch production, diversification of customer demands, and short life cycles of products. Consequently, the Korean manufacturing companies are in need of more efficient production planning and scheduling techniques. In this paper, the research trend of scheduling techniques is investigated to provide relevant information to researchers in this field. Furthermore, some implications for future researches are presented regarding literatures published in Korea over the last 10 years. This paper presents an entire investigation into Korean research works on scheduling (2,569 papers) that are published from 2007 to 2016. Especially, detailed analysis was carried out in the following three industry : 1) semiconductor, 2) shipbuilding and 3) automobile. In this paper, approaches to scheduling presented in the literature are categorized into the following three categories : 1) application, 2) algorithm, and 3) simulation modeling. First, in the semiconductor industry, scheduling techniques related to semiconductor cleaning processes, photolithography processes, chemical processes, transport and transport equipment have been found to be dominant. Second, the shipbuilding industry is focused on assembly processes, transporter, crane and various existing production management system. On the other hand, the scheduling research of the automobile industry is mainly focused on the vehicle movement routing and procurement supply-chain planning algorithm in terms of logistics. The conclusion of this study are expected to provide many implications for various types of academic and practical follow-up studies related to scheduling in consideration of main characteristics of semiconductor, shipbuilding and automobile industries.