• Title/Summary/Keyword: semiconductor

Search Result 10,203, Processing Time 0.04 seconds

Electrical response of tungsten diselenide to the adsorption of trinitrotoluene molecules (폭발물 감지 시스템 개발을 위한 TNT 분자 흡착에 대한 WSe2 소자의 전기적 반응 특성 평가)

  • Chan Hwi Kim;Suyeon Cho;Hyeongtae Kim;Won Joo Lee;Jun Hong Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.255-260
    • /
    • 2023
  • As demanding the detection of explosive molecules, it is required to develop rapidly and precisely responsive sensors with ultra-high sensitivity. Since two-dimensional semiconductors have an atomically thin body nature where mobile carriers accumulate, the abrupt modulation carrier in the thin body channel can be expected. To investigate the effectiveness of WSe2 semiconductor materials as a detection material for TNT (Trinitrotoluene) explosives, WSe2 was synthesized using thermal chemical vapor deposition, and afterward, WSe2 FETs (Field Effect Transistors) were fabricated using standard photo-lithograph processes. Raman Spectrum and FT-IR (Fourier-transform infrared) spectroscopy reveal that the adsorption of TNT molecules induces the structural transition of WSe2 crystalline. The electrical properties before and after adsorption of TNT molecules on the WSe2 surface were compared; as -50 V was applied as the back gate bias, 0.02 μA was recorded in the bare state, and the drain current increased to 0.41 μA with a dropping 0.6% (w/v) TNT while maintaining the p-type behavior. Afterward, the electrical characteristics were additionally evaluated by comparing the carrier mobility, hysteresis, and on/off ratio. Consequently, the present report provides the milestone for developing ultra-sensitive sensors with rapid response and high precision.

A Study on the Impact of Protection Layers on Workplace Workers in the Event of a Toxic Substance Release (독성물질 누출 시 방호계층 적용에 따른 사업장 내 근로자 피해 영향 연구)

  • Sun Jae Hwang;Joon Won Lee;Deuk Hwan Kim;Sang Chan Choi
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.43-49
    • /
    • 2023
  • Hydrofluoric acid is a less acidic substance than hydrochloric acid, nitric acid, and sulfuric acid, but it is one of the most dangerous substances for humans. In recent years, it has become an indispensable substance in industries such as chemical plants and the semiconductor industry, and although it is a threat to the human body, its use is increasing for various purposes, and the amount of use is constantly increasing due to the expansion and development of the industry. The dangers of hydrogen fluoride have been highlighted since the 2012 accident, which led to a more than fivefold increase in management standards for handling facilities. Hydrogen fluoride converts to hydrofluoric acid when exposed to the air, which can be fatal to humans. This study simulates the effects of a release of a toxic substance in the workplace, even though a protection layer has been provided to minimize the damage caused by the released toxic substance, and recommend ways to control the risk to workers in the event of a release in the workplace.

Comparative analysis on darcy-forchheimer flow of 3-D MHD hybrid nanofluid (MoS2-Fe3O4/H2O) incorporating melting heat and mass transfer over a rotating disk with dufour and soret effects

  • A.M. Abd-Alla;Esraa N. Thabet;S.M.M.El-Kabeir;H. A. Hosham;Shimaa E. Waheed
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.325-340
    • /
    • 2024
  • There are several novel uses for dispersing many nanoparticles into a conventional fluid, including dynamic sealing, damping, heat dissipation, microfluidics, and more. Therefore, melting heat and mass transfer characteristics of a 3-D MHD Hybrid Nanofluid flow over a rotating disc with presenting dufour and soret effects are assessed numerically in this study. In this instance, we investigated both ferric sulfate and molybdenum disulfide as nanoparticles suspended within base fluid water. The governing partial differential equations are transformed into linked higher-order non-linear ordinary differential equations by the local similarity transformation. The collection of these deduced equations is then resolved using a Chebyshev spectral collocation-based algorithm built into the Mathematica software. To demonstrate how different instances of hybrid/ nanofluid are impacted by changes in temperature, velocity, and the distribution of nanoparticle concentration, examples of graphical and numerical data are given. For many values of the material parameters, the computational findings are shown. Simulations conducted for different physical parameters in the model show that adding hybrid nanoparticle to the fluid mixture increases heat transfer in comparison to simple nanofluids. It has been identified that hybrid nanoparticles, as opposed to single-type nanoparticles, need to be taken into consideration to create an effective thermal system. Furthermore, porosity lowers the velocities of simple and hybrid nanofluids in both cases. Additionally, results show that the drag force from skin friction causes the nanoparticle fluid to travel more slowly than the hybrid nanoparticle fluid. The findings also demonstrate that suction factors like magnetic and porosity parameters, as well as nanoparticles, raise the skin friction coefficient. Furthermore, It indicates that the outcomes from different flow scenarios correlate and are in strong agreement with the findings from the published literature. Bar chart depictions are altered by changes in flow rates. Moreover, the results confirm doctors' views to prescribe hybrid nanoparticle and particle nanoparticle contents for achalasia patients and also those who suffer from esophageal stricture and tumors. The results of this study can also be applied to the energy generated by the melting disc surface, which has a variety of industrial uses. These include, but are not limited to, the preparation of semiconductor materials, the solidification of magma, the melting of permafrost, and the refreezing of frozen land.

Optimization of 1.2 kV 4H-SiC MOSFETs with Vertical Variation Doping Structure (Vertical Variation Doping 구조를 도입한 1.2 kV 4H-SiC MOSFET 최적화)

  • Ye-Jin Kim;Seung-Hyun Park;Tae-Hee Lee;Ji-Soo Choi;Se-Rim Park;Geon-Hee Lee;Jong-Min Oh;Weon Ho Shin;Sang-Mo Koo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.332-336
    • /
    • 2024
  • High-energy bandgap material silicon carbide (SiC) is gaining attention as a next-generation power semiconductor material, and in particular, SiC-based MOSFETs are developed as representative power semiconductors to increase the breakdown voltage (BV) of conventional planar structures. However, as the size of SJ (Super Junction) MOSFET devices decreases and the depth of pillars increases, it becomes challenging to uniformly form the doping concentration of pillars. Therefore, a structure with different doping concentrations segmented within the pillar is being researched. Using Silvaco TCAD simulation, a SJ VVD (vertical variation doping profile) MOSFET with three different doping concentrations in the pillar was studied. Simulations were conducted for the width of the pillar and the doping concentration of N-epi, revealing that as the width of the pillar increases, the depletion region widens, leading to an increase in on-specific resistance (Ron,sp) and breakdown voltage (BV). Additionally, as the doping concentration of N-epi increases, the number of carriers increases, and the depletion region narrows, resulting in a decrease in Ron,sp and BV. The optimized SJ VVD MOSFET exhibits a very high figure of merit (BFOM) of 13,400 KW/cm2, indicating excellent performance characteristics and suggesting its potential as a next-generation highperformance power device suitable for practical applications.

Heterostructures of SnO2-Decorated Cr2O3 Nanorods for Highly Sensitive H2S Detection (고감도 H2S 감지를 위한 SnO2 장식된 Cr2O3 nanorods 이종구조)

  • Jae Han Chung;Yun-Haeng Cho;Junho Hwang;Su hyeong Lee;Seunggi Lee;See-Hyung Park;Sungwoo Sohn;Donghwi Cho;Kwangjae Lee;Young-Seok Shim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2024
  • The creation of vertically aligned one-dimensional (1D) nanostructures through the decoration of n-type tin oxide (SnO2) on p-type chromium oxide (Cr2O3) constitutes an effective strategy for enhancing gas sensing performance. These heterostructures are deposited in multiple stages using a glancing angle deposition technique with an electron beam evaporator, resulting in a reduction in the surface porosity of the nanorods as SnO2 is incorporated. In comparison to Cr2O3 films, the bare Cr2O3 nanorods exhibits a response 3.3 times greater to 50 ppm H2S at 300℃, while the SnO2-decorated Cr2O3 nanorods demonstrate an eleven-fold increase in response. Furthermore, when subjected to various gases (CH4, H2S, CO2, H2), a notable selectivity toward H2S is observed. This study paves the way for the development of p-type semiconductor sensors with heightened selectivity and sensitivity towards H2S, thus advancing the prospects of gas sensor technology.

Development of a General Occupational Safety and Health (OSH) Guide for Maintenance Work at Electronics Industry Processing Facilities (전자산업 공정 설비 작업 안전보건가이드 개발)

  • Soyeon Kim;Seunghee Lee;Jeongyeon Park;Taek-hyeon Han;Jae-jin Moon;Ingyun Jung;Kyung Ehi Zoh;Seyoung Kwon;Kwang Jae Chung;Dong-Uk Park
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.1
    • /
    • pp.18-25
    • /
    • 2024
  • Objectives: The primary aim of this study is to create an Occupational Safety and Health (OSH) guide for high-risk maintenance tasks, specifically one designed for maintenance work (MW) in the electronics industry. Methods: The methodology involved a literature review, field investigations, and discussions. An initial draft of the OSH guide was created and then refined through consultations with experts possessing extensive experience in MW for electronic processes. Results: Specific MW tasks within electronics processing facilities identified as high-risk by the research were selected. A comprehensive OSH guide for these tasks was developed consisting of approximately 11 to 12 components and encompassing about 20-25 pages. Implementing safety and health measures before, during, and after MW is crucial for the protection of maintenance personnel. The guide is enriched with real-case scenarios of industrial accidents and occupational diseases to enhance maintenance workers' comprehension of the OSH principles. For a clearer understanding of and adherence to the safety protocols, the guide incorporates visual aids, including cartoons and photographs. Conclusions: This OSH guide is designed to ensure the protection of workers involved in maintenance activities in the electronics industry. It aligns with global standards set by the International Organization for Standardization (ISO) and Semiconductor Equipment and Material International (SEMI) to ensure a high level of safety and compliance.

A Design of CMOS 5GHz VCO using Series Varactor and Parallel Capacitor Banks for Small Kvco Gain (작은 Kvco 게인를 위한 직렬 바랙터와 병렬 캐패시터 뱅크를 이용한 CMOS 5GHz VCO 설계)

  • Mi-Young Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.139-145
    • /
    • 2024
  • This paper presents the design of a voltage controlled oscillator (VCO) which is one of the key building blocks in modern wireless communication systems with small VCO gain (Kvco) variation. To compensate conventional large Kvco variation, a series varactor bank has been added to the conventional LC-tank with parallel capacitor bank array. And also, in order to achieve excellent phase noise performance while maintaining wide tuning range, a mixed coarse/fine tuning scheme(series varactor array and parallel capacitor array) is chosen. The switched varactor array bank is controlled by the same digital code for switched capacitor array without additional digital circuits. For use at a low voltage of 1.2V, the proposed current reference circuit in this paper used a current reference circuit for safety with the common gate removed more safely. Implemented in a TSMC 0.13㎛ CMOS RF technology, the proposed VCO can be tuned from 4.4GH to 5.3GHz with the Kvco (VCO gain ) variation of less than 9.6%. While consuming 3.1mA from a 1.2V supply, the VCO has -120dBc/Hz phase noise at 1MHz offset from the carrier of the 5.3 GHz.

Flexible Planar Heater Comprising Ag Thin Film on Polyurethane Substrate (폴리우레탄 유연 기판을 이용한 Ag 박막형 유연 면상발열체 연구)

  • Seongyeol Lee;Dooho Choi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.29-34
    • /
    • 2024
  • The heating element utilizing the Joule heating generated when current flows through a conductor is widely researched and developed for various industrial applications such as moisture removal in automotive windshield, high-speed train windows, and solar panels. Recently, research utilizing heating elements with various nanostructures has been actively conducted to develop flexible heating elements capable of maintaining stable heating even under mechanical deformation conditions. In this study, flexible polyurethane possessing excellent flexibility was selected as the substrate, and silver (Ag) thin films with low electrical resistivity (1.6 μΩ-cm) were fabricated as the heating layer using magnetron sputtering. The 2D heating structure of the Ag thin films demonstrated excellent heating reproducibility, reaching 95% of the target temperature within 20 seconds. Furthermore, excellent heating characteristics were maintained even under mechanically deforming environments, exhibiting outstanding flexibility with less than a 3% increase in electrical resistance observed in repetitive bending tests (10,000 cycles, based on a curvature radius of 5 mm). This demonstrates that polyurethane/Ag planar heating structure bears promising potential as a flexible/wearable heating element for curved-shaped appliances and objects subjected to diverse stresses such as human body parts.

Antioxidant and anti-aging effects of Alpinia galanga L. rhizome extracts and preservation of antioxidant effects in W/O type emulsion (갈랑가 뿌리 추출물의 항산화, 항노화 효과 및 W/O형 에멀젼에서 항산화 효과의 보존성)

  • Sun Young Yoon;Bong Hwan Kim;Young Ah Jang;Se Gie Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.424-435
    • /
    • 2023
  • As a result of this study, DPPH radical scavenging activity was 81.8% at a concentration of 100 ㎍/mL of Alpinia galanga L. rhizome 70% ethanol extract (AG.E), and ABTS+ radical scavenging activity was confirmed to be 99.8%, similar to L-Ascorbic acid (AA), at a low concentration of 50 ㎍/mL AG.E. To measure anti-aging activity, collagenase and elastase inhibitory activities were measured and AG.E showed higher inhibitory effects than epigallocatechin gallate (EGCG) starting at a low concentration of 50 ㎍/mL. In particular, AG.E showed inhibitory effects more than three times that of EGCG at a concentration of 500 ㎍/mL. In order to verify anti-aging effect of AG.E in CCD-986sk cell, good anti-aging effect was obtained in various experiments stimulated with UVB. In a gene expression analysis experiment using RT-PCR, the COL1A mRNA expression level was found to increase 2.90 times compared to no addition at a low concentration of 20 ㎍/mL AG.E, confirming the possibility of developing it as a good functional material related to anti-aging. As a basic study on temporal biological activity preservation ratio of material when applied to formulations, AG.E, and AA were added to a stable W/O type emulsion and stored in a thermostat at 25 ℃ for 60 days. As a result of measuring DPPH and ABTS+ radical scavenging activities on the 1st, 30th, and 60th days, it was confirmed that antioxidant effects are maintained at a high level over time in formulations.

Analysis of Plastic Deformation Behavior according to Crystal Orientation of Electrodeposited Cu Film Using Electron Backscatter Diffraction and Crystal Plasticity Finite Element Method (전자 후방 산란 분석기술과 결정소성 유한요소법을 이용한 전해 도금 구리 박막의 결정 방위에 따른 소성 변형 거동 해석)

  • Hyun Park;Han-Kyun Shin;Jung-Han Kim;Hyo-Jong Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.36-44
    • /
    • 2024
  • Copper electrodeposition technology is essential for producing copper films and interconnects in the microelectronics industries including semiconductor packaging, semiconductors and secondary battery, and there are extensive efforts to control the microstructure of these films and interconnects. In this study, we investigated the influence of crystallographic orientation on the local plastic deformation of copper films for secondary batteries deformed by uniaxial tensile load. Crystallographic orientation maps of two electrodeposited copper films with different textures were measured using an electron backscatter diffraction (EBSD) system and then used as initial conditions for crystal plasticity finite element analysis to predict the local plastic deformation behavior within the films during uniaxial tension deformation. Through these processes, the changes of the local plastic deformation behavior and texture of the films were traced according to the tensile strain, and the crystal orientations leading to the inhomogeneous plastic deformation were identified.