• Title/Summary/Keyword: semi-systolic architecture

Search Result 3, Processing Time 0.016 seconds

Design of Montgomery Algorithm and Hardware Architecture over Finite Fields (유한 체상의 몽고메리 알고리즘 및 하드웨어 구조 설계)

  • Kim, Kee-Won;Jeon, Jun-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.2
    • /
    • pp.41-46
    • /
    • 2013
  • Finite field multipliers are the basic building blocks in many applications such as error-control coding, cryptography and digital signal processing. Recently, many semi-systolic architectures have been proposed for multiplications over finite fields. Also, Montgomery multiplication algorithm is well known as an efficient arithmetic algorithm. In this paper, we induce an efficient multiplication algorithm and propose an efficient semi-systolic Montgomery multiplier based on polynomial basis. We select an ideal Montgomery factor which is suitable for parallel computation, so our architecture is divided into two parts which can be computed simultaneously. In analysis, our architecture reduces 30%~50% of time complexity compared to typical architectures.

$AB^2$ Semi-systolic Architecture over GF$GF(2^m)$ ($GF(2^m)$상에서 $AB^2$ 연산을 위한 세미시스톨릭 구조)

  • 이형목;전준철;유기영;김현성
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.45-52
    • /
    • 2002
  • In this contributions, we propose a new MSB(most significant bit) algorithm based on AOP(All One Polynomial) and two parallel semi-systolic architectures to computes $AB^2$over finite field $GF(2^m)$. The proposed architectures are based on standard basis and use the property of irreducible AOP(All One Polynomial) which is all coefficients of 1. The proposed parallel semi-systolic architecture(PSM) has the critical path of $D_{AND2^+}D_{XOR2}$ per cell and the latency of m+1. The modified parallel semi-systolic architecture(WPSM) has the critical path of $D_{XOR2}$ per cell and has the same latency with PSM. The proposed two architectures, PSM and MPSM, have a low latency and a small hardware complexity compared to the previous architectures. They can be used as a basic architecture for exponentiation, division, and inversion. Since the proposed architectures have regularity, modularity and concurrency, they are suitable for VLSI implementation. They can be used as a basic architecture for algorithms, such as the Diffie-Hellman key exchange scheme, the Digital Signature Algorithm(DSA), and the ElGamal encryption scheme which are needed exponentiation operation. The application of the algorithms can be used cryptosystem implementation based on elliptic curve.

Design of Semi-Systolic Architecture for $AB^2$ Operation ($AB^2$ 연산을 위한 세미시스톨릭 구조 설계)

  • Lee Jin-Ho;Kim Hyun-Sung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.4
    • /
    • pp.41-46
    • /
    • 2004
  • This paper presents a new semi- systolic architecture for $AB^2$ operation. First of all the previous architecture proposed by Lee et al. is analysed and then we present a new algorithm and it's architecture for $AB^2$ operation based on AOP (all one polynomial) to solve the shortcomings in the architecture. Proposed architecture has an efficient configuration than other previous architectures. It is useful for implementing the exponentiation architecture, which is the core operation in public-key cryptosystems.

  • PDF