• 제목/요약/키워드: semi-solid

검색결과 480건 처리시간 0.027초

CLSI M40-A2 기준에 따른 수송배지의 흡수 및 배출, 생존 효율, 회수율 평가 (Evaluation of Absorption and Release, Survival Efficiency and Recovery Rate of Transport Medium according to the CLSI M40-A2 Standard)

  • 하성일;석현수;신정섭;허웅;박강균;박연준
    • 대한임상검사과학회지
    • /
    • 제51권2호
    • /
    • pp.164-170
    • /
    • 2019
  • 5종류의 수송배지를 흡수 및 배출 능력, 생존 효율, 회수율을 CLSI (Clinical and Laboratory Standards Institute) M40-A2의 Swab elution method (Quantitative) 기준으로 평가하였다. 액체배지가 반유동 배지보다 3가지 평가에서 대부분 우수한 결과값을 보여주었다. Flocked swab이 standard swab 형태보다 균의 흡수 및 배출의 능력 또한 우수하였다. 생존 효율에 대한 평가 결과는 액체배지(S4)가 가장 우수한 결과값을 보였다. 성장이 좋지 않은 S. pneumoniae는 액체배지(S4, S5)에서 생존효율과 회수율이 높았다. 균 회수율 평가 결과는 S. pyogenes는 모든 배지에서 CLSI 기준에 적합하였다. S. pneumoniae는 반유동 배지(S2, S3)에서 부적합하였고, 나머지 배지는 모두 기준에 적합하였다. H. influenzae는 반유동 배지(S1, S3)에서 부적합하였고, 반유동 배지(S2), 액체배지(S4, S5)에서 기준에 적합하였다. 호흡기 질환을 유발하는 S. pneumonia, H. influenzae의 생존 능력은 대부분의 배지에서 좋지 않았다. P. aeruginosa는 실온에서 과성장이 관찰되었다. 액체배지와 flocked swab의 조합이 3가지 평가 방법에서 가장 뛰어난 결과를 평가를 통해 확인하였다.

Textural and Organoleptic Properties of Tofu Manufactured with Micronized Full-fat Soyflour Fortified with Food Ingredients

  • Shim, Jae-Jin;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • 제8권3호
    • /
    • pp.278-283
    • /
    • 2003
  • Textural properties of tofu manufactured with micronized full-fat soyflour (MFS) were enhanced by the addition of soy protein isolate, whey protein concentrate, chitosan oligosaccharide and mushroom powder. The MFS solution (14.2% solid content) was converted to semi-solid tofu by a two-stage heat treatment with the addition of 4% coagulant mix. The MFS tofu was evaluated by a compression test as well as sensory evaluation. To produce the semi-solid gel (MFS tofu) with reasonably high strength and toughness, the MFS solution with 14.2% solid content and 7.0% protein had to be heat treated at 121$^{\circ}C$ for 3min. The relative toughness of MFS tofu was increased by the addition of SPI, showing a 144% increase. The toughness of MFS tofu prepared with the MFS/SPI mixture was greatly increased by the addition of WPC at the level of 0.7% and the water separation from MFS tofu was greatly reduced. Furthermore, the toughness and strength of MFS/SPI tofu was enhanced by the addition of 0.1% chitosan oligosaccharide and 0.2% mushroom powder. The sensory evaluation of the tofu fortified with SPI, chitosan oligosaccharide and mushroom powder was superior to that of MFS tofu, with a higher score for overall preference.

레오로지 소재의 압축변형시 고상입자 거동의 동역학 해석 (Dynamics Simulation of Solid Particles in Compression Deformation of Rheology Material)

  • 이창수;강충길
    • 소성∙가공
    • /
    • 제15권5호
    • /
    • pp.395-401
    • /
    • 2006
  • It is reported that semi-solid forming process takes many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy saves. It is important to predict the deformation behavior for optimization of the forging process with semi-solid materials and to control liquid segregation for mechanical properties of materials. But rheology material has thixotropic, pseudo-plastic and shear-thinning characteristics. So, it is difficult for a numerical simulation of the rheology process to be performed because complicated processes such as the filling to include the state of the free surface and solidification in the phase transformation must be considered. General plastic or fluid dynamic analysis is not suitable for the analysis of the rheology material behavior. Recently, molecular dynamics is used for the behavior analysis of the rheology material and turned out to be suitable among several methods. In this study, molecular dynamics simulation was performed for the control of liquid segregation, forming velocity, and viscosity in compression experiment as a part of study on the analysis of rheology forming process.

용융금속 액적의 고체표면 충돌거동 (Collision Behavior of Molten Metal Droplet with Solid Surface)

  • 양영수;손광재;강대현
    • Journal of Welding and Joining
    • /
    • 제18권4호
    • /
    • pp.55-63
    • /
    • 2000
  • This paper presents a study of the solder bumping process. The theoretical model, based on the variational principle instead of solving the Navier-Stokes equation with moving boundaries, was developed to considered the energy dissipation in semi-solid phase and the approximate solidification time of the molten metal droplet. The simulation results revealed that the developed model could reasonably describe the collision behavior of molten metal with solid surface. Simulations were made with variation of initial droplet temperature, substrate metal and initial substrate temerature.

  • PDF

삼차원 스캐너와 가변 적층 쾌속조형공정을 이용한 대형 입체 형상의 쾌속 제작 : 러쉬모어산 기념물 제작 사례 (Rapid Fabrication of Large-Sized Solid Shape using 3D Scanner and Variable Lamination Manufacturing : Case Study of Mount Rushmore Memorial)

  • 이상호;김효찬;송민섭;박승교;양동열
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.1958-1967
    • /
    • 2004
  • This paper describes the method to rapidly fabricate the large-sized physical model with the envelope model size of more than 600 mm${\times}$ 600 mm${\times}$ 600 mm using two type semi-automatic VLM-ST processes in connection with the reverse engineering technology. The fabrication procedure of the large-sized solid shape is as follows: (1) Generation of STL data from 3D scan data using 3D scanner, (2) generation of shell-type STL data by Boolean operation, (3) division of shell-type STL data into several pieces by solid splitting, (4) generation of USL data for each piece with VLM-Slicer, (5) fabrication of each piece by cutting and stacking according to USL data using VLM-ST apparatus, (6) completion of a shell-type prototype by zigzag stacking and assembly for each piece, (7) completion of a 3D solid shape by foam backing, (8) surface finish of a completed 3D solid shape by coating and sanding. In order to examine the applicability of the proposed method, the miniature of the Mount Rushmore Memorial has been fabricated. The envelope model size of the miniature of the Mount Rushmore Memorial is 1,453 mm${\times}$ 760 mm${\times}$ 853 mm in size. From the result of the fabricated miniature of the Mount Rushmore Memorial, it has been shown that the method to fabricate the large object using two type semi-automatic VLM-ST processes in connection with the reverse engineering technology are very fast and efficient.

Rheo-Compocasting에 의한 $SiC_p$/6063 Al합금의 복합조직 (Composite Structures of $SiC_p$/6063 Aluminum Alloy by Rheo-Compocasting.)

  • 최정철
    • 한국주조공학회지
    • /
    • 제10권4호
    • /
    • pp.309-315
    • /
    • 1990
  • Aluminum alloy matrix composites reinforced by SiC particles were prepared by rheocompocasting, a process which consists of the incoporation and distribution of reinforcement by stirring within a semi-solid alloy. When the volume fraction of SiCp and stirring speed were fixed, the dispersion of SiCp in Al-matrix alloy depended on stirring time and solid volume fraction in slurry. The results were as follows : 1) As a dispersed SiCp during stirring at $647^{\circ}C$ in 6063-Al alloy, SiC was better dispersed than that other temperature, where solid volume fraction was 43% in slurry. 2) When increased solid fraction in slurry, rate of dispersing SiC increased during stirring and porosities decreased in matrix alloy after casting. 3) Inspite of stirring with 800rpm, since solid particles of matrix alloy in slurry joined each other and occured joining growth, so that SiC was not dispersed into solid particle.

  • PDF