• 제목/요약/키워드: semi-rigid analysis

검색결과 193건 처리시간 0.049초

풍하중이 작용하는 고용량 송전철탑의 해석을 통한 응력 분포 고찰 (A Study for Stress Distribution of the High-voltage Transmission Tower Under Wind Forces)

  • 장진원;김승준;박종섭;강영종
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.75-78
    • /
    • 2007
  • The structural methodology in designing a transmission tower have been performed to assume a simple truss behavior. But there're quite differences between a simple truss behavior and a real one. A suitable explanation for a structural stability can be expressed as a semi-rigid connection instead of the assumed hinged connection. This study proposes an alternative structural analysis modelling strategy for the transmission tower design. Proposed element models are truss element model, beam element model, and combined beam-truss element model. The static finite element analysis shows that there's a moment distribution between a mainpost member and the other bracing member.

  • PDF

운동 중인 유연한 구조물의 동적 해석 (Dynamic Analysis of a Flexible Structure in Motion)

  • Sin Young Lee
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.390-395
    • /
    • 2003
  • Moving flexible structures such as transfer systems in press machine, crane, working table of machine tools have vibration problems because of starting, feeding and stopping. An analysis method is suggested and experimentally studied in order to solve a vibration problem of a moving flexible structure. In this method, the concepts of substructure synthesis method and semi-static displacement including rigid body mode were used. Total deformation of a structure was assumed to be composed of quasi-static and dynamic components. Experimental results from an elementary model of a transfer feeder showed good agreements with computational results.

  • PDF

Dynamic Analysis of Asphalt Concrete Pavement Structure

  • 윤경구;박제선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.241-246
    • /
    • 1996
  • A new solution for the dynamic analysis of as asphalt concrete pavements under moving loads has been developed. The asphalt concrete pavement can be modeled in elastic or viscoelastic medium of multi-layered structure. The subgrade can be modeled as either a rigid base or a semi-infinite halfspace. The loads may be constant or arbitrary circular loads into one direction. The method utilizes the Complex Response Method of transient analysis with a continuum solution in the horizontal direction and a finite-element solution in the vertical direction. This proposed method incorporates such important factors as wave propagation, inertia and damping effects of the medium as well as frequency-dependent asphalt concrete properties. The proposed method has been validted with the full-scale field truck test, which was conducted on instrumented asphalt concrete section on a test track at PACCAR Technical Center in Mount Vernon, Washington. Comparison with field strain data from full-scale pavement tests has shown excellent agreement. Theoretical results have shown that the effect of vehicle speed is significant and that it is in part due to the frequency-dependent

  • PDF

부분 강절 골조의 응력 해석 (Stress Analysis of Semi-Rigid Frame)

  • 김선혜;김순철;이수곤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.306-313
    • /
    • 1998
  • Contrary to reinforced concrete frames, the beams or girders found in actual steel frames are neither hinged nor fixed at their ends. Instead, they are usually restrained by the columns to which they are attached. Here in this paper, common finite element program for plane frame stress analysis is improved by including the effect of partial fixities of the girder ends. To include the effect of partial fixities of the girder ends, Kim's modified slope-deflection equation is adopted. The stress analysis results obtained by this proposed method are then compared with Kim's example. Finally, method of choosing the most economic girder section for a multi-story frame is suggested through the examples.

  • PDF

A Simplified Steel Beam-To-Column Connection Modelling Approach and Influence of Connection Ductility on Frame Behaviour in Fire

  • Shi, Ruoxi;Huang, Shan-Shan;Davison, Buick
    • 국제초고층학회논문집
    • /
    • 제7권4호
    • /
    • pp.343-362
    • /
    • 2018
  • A simplified spring connection modelling approach for steel flush endplate beam-to-column connections in fire has been developed to enable realistic behaviour of connections to be incorporated into full-scale frame analyses at elevated temperature. Due to its simplicity and reliability, the proposed approach permits full-scale high-temperature frame analysis to be conducted without high computational cost. The proposed simplified spring connection modelling approach has been used to investigate the influence of connection ductility (both axial and rotational) on frame behaviour in fire. 2D steel and 3D composite frames with a range of beam spans were modelled to aid the understanding of the differences in frame response in fire where the beam-to-column connections have different axial and rotational ductility assumptions. The modelling results highlight that adopting the conventional rigid or pinned connection assumptions does not permit the axial forces acting on the connections to be accurately predicted, since the axial ductility of the connection is completely neglected when the rotational ductility is either fully restrained or free. By accounting for realistic axial and rotational ductilities of beam-to-column connections, the frame response in fire can be predicted more accurately, which is advantageous in performance-based structural fire engineering design.

Buckling analysis of semi-rigid gabled frames

  • Rezaiee-Pajand, Mohammad;Shahabian, Farzad;Bambaeechee, Mohsen
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.605-638
    • /
    • 2015
  • It is intended to perform buckling analysis of steel gabled frames with tapered members and flexible connections. The method is based on the exact solutions of the governing differential equations for stability of a gabled frame with I-section elements. Corresponding buckling load and subsequently effective length factor are obtained for practical use. For several popular frames, the influences of the shape factor, taper ratio, span ratio, flexibility of connections and elastic rotational and translational restraints on the critical load, and corresponding equivalent effective length coefficient are studied. Some of the outcomes are compared against available solutions, demonstrating the accuracy, efficiency and capabilities of the presented approach.

Study on the behavior of beam-column connection in precast concrete structure

  • Kataoka, Marcela N.;Ferreira, Marcelo A.;El Debs, Ana Lucia H.C.
    • Computers and Concrete
    • /
    • 제16권1호
    • /
    • pp.163-178
    • /
    • 2015
  • Due to the increase of the use of precast concrete structures in multistory buildings, this paper deals with the behavior of an specific type of beam-column connection used in this structural system. The connection is composed by concrete corbels, dowels and continuity bars passing through the column. The study was developed based on the experimental and numerical results. In the experimental analysis a full scale specimen was tested and for numerical study, a 3D computational model was created using a finite element analyze (FEA) software, called DIANA. The comparison of the results showed a satisfactory correlation between loading versus displacement curves.

상시하중상태에서 박벽의 보강효과에 대한 연구 (Reinforcing Effect of Thin-wall at Serviceability Condition)

  • 김두환;윤성수;박진선
    • 한국농공학회논문집
    • /
    • 제52권2호
    • /
    • pp.11-17
    • /
    • 2010
  • For the reasonable analysis of design problems for agricultural facilities, considered the reinforcing effect of thin-wall. The most of agricultural structure is constructed small scale and have many purposes. Thus it has been designed temporary rather than permanent structure, and has relatively large slenderness ratio, small section and semi-rigid condition. Therefore many agricultural facilities are consist of relatively strong frame with weak wall at the viewpoint of stiffness and have not been reflected in the design. But the tension field influences to collapse of structure have already known. Therefore, we need quantification the effect of tension field at structural analysis. In this study, present the method of quantification the effect of tension field that came out thin-plate surrounded by high stiffness frame. The numerical results show that the effect of tension field effect for thin-wall is about 5% of the sectional area of frame in study agricultural facilities.

Development of triangular flat-shell element using a new thin-thick plate bending element based on semiLoof constrains

  • Chen, Yong-Liang;Cen, Song;Yao, Zhen-Han;Long, Yu-Qiu;Long, Zhi-Fei
    • Structural Engineering and Mechanics
    • /
    • 제15권1호
    • /
    • pp.83-114
    • /
    • 2003
  • A new simple 3-node triangular flat-shell element with standard nodal DOF (6 DOF per node) is proposed for the linear and geometrically nonlinear analysis of very thin to thick plate and shell structures. The formulation of element GT9 (Long and Xu 1994), a generalized conforming membrane element with rigid rotational freedoms, is employed as the membrane component of the new shell element. Both one-point reduced integration scheme and a corresponding stabilization matrix are adopted for avoiding membrane locking and hourglass phenomenon. The bending component of the new element comes from a new generalized conforming Kirchhoff-Mindlin plate element TSL-T9, which is derived in this paper based on semiLoof constrains and rational shear interpolation. Thus the convergence can be guaranteed and no shear locking will happen. Furthermore, a simple hybrid procedure is suggested to improve the stress solutions, and the Updated Lagrangian formulae are also established for the geometrically nonlinear problems. Numerical results with solutions, which are solved by some other recent element models and the models in the commercial finite element software ABAQUS, are presented. They show that the proposed element, denoted as GMST18, exhibits excellent and better performance for the analysis of thin-think plates and shells in both linear and geometrically nonlinear problems.

금형 및 공정변수에 따른 층상복합재료의 압출성형 특성에 관한 연구 (A study on the extrusion forming characteristics of construction materials with die and process parameters)

  • 고병두;이하성
    • Design & Manufacturing
    • /
    • 제7권1호
    • /
    • pp.11-18
    • /
    • 2013
  • This paper presents the plastic inhomogeneous deformation behavior of bimetal composite rods during the axisymmetric and steady-state extrusion process through a conical die. The rigid-plastic FE model considering frictional contact problem was used to analyze the co-extrusion process with material combinations of Cu/Al. Different cases of initial geometry shape for composite material were simulated under different conditions of co-extrusion process, which includes the interference and frictional conditions. The main design parameters influencing on deformation pattern are diameter ratio of the composite components and semi-die angle. Efforts are focused on the deformation patterns, velocity gradient, predicted forming load and the end distance through the various simulations. Simulation results indicate that there is an obvious difference of forming pattern with various diameter ratio and semi-die angle. The analysis in this paper is concentrated on the evaluation of the design parameters on the deformation pattern of composite rod.

  • PDF