• Title/Summary/Keyword: semi-quantitative X-ray diffraction analysis

Search Result 6, Processing Time 0.022 seconds

X-ray Diffraction Studies of Poly(aryl ether ether ketone) Fibers with Different Degrees of Crystallinity and Orientation

  • Karacan Ismail
    • Fibers and Polymers
    • /
    • v.6 no.3
    • /
    • pp.206-218
    • /
    • 2005
  • Structural studies of series of 'as spun' and drawn PEEK fibers have been carried out using X-ray diffraction and optical microscopy techniques. The analysis of results suggest that fibers produced at a constant draw ratio with increasing draw temperatures show enhanced orientation and crystalline behaviour. The resolved equatorial and meridional traces provide additional structural parameters in terms of crystallinity, crystallite size, and crystallite thickness. It is concluded that drawing at a temperature below $T_g(i.e.,\;144^{\circ}C)$ results in poorly oriented non-crystalline materials, whereas drawing above $T_g$ results in highly oriented semi crystalline materials. Additional drawing proved to increase the overall orientation with slight improvements in lateral order of the chain molecules. Quantitative analysis revealed that the crystallite size increases with increasing drawing temperature. The results also revealed the increased crystallite size upon additional drawing. Crystalline orientation parameter, $_c$, suggests almost perfect orientation. In all cases, the amorphous orientation is found to be lower than the overall orientation parameter obtained from the optical birefringence. As a result of additional drawing, crystalline orientation was found to increase slightly but the increase in the orientation of non-crystalline material was found to be substantial. An average crystalline density was determined from the orthorhombic unit cell dimensions. It was found to vary as a result of processing conditions. It was also found that the value of the maximum birefringence shows heavy dependence on the chain conformation.

Sediment Provenance of Southeastern Yellow Sea Mud Using Principal Component Analysis (주성분분석법을 활용한 황해 남동 이질대 퇴적물의 기원지 연구)

  • Cho, Hyen Goo;Kim, Soon-Oh;Lee, Yun Ji;Ahn, Sung Jin;Yi, Hi Il
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.107-114
    • /
    • 2014
  • In this study, we tried to determine the origin of fine-grained sediments in Southeastern Yellow Sea Mud patch (SEYSM) using principal component analysis coupled with semi-quantitative X-ray diffraction analysis for 4 major clay minerals. We used 51 marine surface sediments from SEYSM and 33 surface sediments of rivers flowing into the Yellow Sea. We made bioplot diagram using R program with principal component 1 and component 2 because the two components might contain about 98% of all data. The content of each clay mineral in the south and north regions of SEYSM are almost similar. In the biplot, SEYSM sediments distribute close to Korean rivers sediments than Huanghe and Changjiang sediments. Based on these results, we suggest that SEYSM is originated from the Korean rivers sediments. The higher accumulation rate in the SEYSM compared to the sediment discharge from neighboring Korean rivers can be explained by erosion and reworking of surface sediments in this area. The principal component analysis can be used for the provenance research of marine sediments around the Korean Peninsula.

Sediment Provenance of Southwestern Cheju Island Mud using Principal Component Analysis (통계적 주성분분석법을 활용한 제주 남서 이질대 퇴적물의 기원지 연구)

  • Lee, Yun Ji;Cho, Hyen Goo;Kim, Soon-Oh;Ahn, Sung Jin;Choi, Hunsoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.189-196
    • /
    • 2013
  • In this study, we tried to define the origin of fine-grained sediments in Southwestern Cheju Island Mud (SWCIM) using principal component analysis. We used relative clay mineral compositions using 138 marine surface sediments, 4 Huanghe sediments and 3 Changjiang river sediments by the semi-quantitative X-ray diffraction analysis. We made bioplot diagram using R program with principal component 1 and component 2 because they might contain more than 90% of all data. Although the distribution pattern of each clay minerals in SWCIM is so intricate, smectite and kaolinite contents are high in the west region, but illite and chlorite contents are rich in the east region. In the biplot, the east region of SWCIM distribute around Changjiang river, whereas west region of SWCIM disperse around Huanghe. Our results might reveal that west region of SWCIM is mainly originated by Huanghe, but east region of SWCIM by Changjiang River.

Semi-quantitative Analysis of Manganese Oxide Mineral in Manganese Nodule From the East Siberian Sea (동시베리아해 망가니즈단괴의 산화망가니즈광물 반정량 분석)

  • Yu, Hye Jin;Shin, Eun Ju;Koo, Hyo Jin;Cho, Hyen Goo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.427-437
    • /
    • 2020
  • Manganese nodules, which are evaluated as potential metal resources, have been found in the Arctic Ocean as well as in the abyssal plains of the Pacific and Indian Oceans. Manganese nodules exhibit strong variations in the morphology, internal texture, chemical composition and mineralogy as they grow. The relationship between the texture and chemical elemental composition during the growth process is well documented, but the mineral composition variation during the growth process is not. Because the manganese oxide minerals in nodules are fine-grained and poorly crystalline, quantitative analysis for the mineral composition is challenging for the bulk nodule sample. This study investigated the internal texture and Mn-oxide mineral composition of manganese nodules obtained from the East Siberian Sea. Semi-quantitative analysis was attempted for three main Mn-oxide minerals constituting the manganese nodules (i.e., todorokite, buserite and birnessite) using the peak area ratio of X-ray diffraction analysis graphs. In the East Siberian Sea manganese nodules, birnessite is more abundant than buserite or todorokite, and no correlation is found between the mineral composition and the internal texture. Instead a correlation is found between the relative content of todorokite and the lamellae depth. The todorokite content tends to increase from the surface to the core of the nodules, which can be attributed to a recrystallization process or difference in the growth rate within the nodule. This study shows that semi-quantitative analysis of manganese oxide minerals using the peak area ratio is useful in the mineralogical study of manganese nodules.

Clay Mineral Distribution and Characteristics in the Southeastern Yellow Sea Mud Deposits (황해 남동 이질대 퇴적물의 점토광물분포 및 특성)

  • Cho, Hyen-Goo;Kim, Soon-Oh;Yi, Hi-Il
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.163-173
    • /
    • 2012
  • In this study, we determined the relative clay mineral composition of 51 surface sediments from SEYSM (Southeastern Yellow Sea Mud) (northern part 25, southern part 26) and 30 river sediments inflow to Yellow Sea using the semi-quantitative X-ray diffraction analyses. In addition to we analyzed illite characteristics of the same samples. The clay-mineral assemblage is composed of illite (61~75%), chlorite (14~24%), kaolinite (9~14%), and smectite (1~7%), in decreasing order. The average composition of each clay mineral is not different from northern part to southern part of SEYSM except a little higher kaolinite and lower smectite content in northern part. Smectite content generally has reverse relationship with illite content. Mineralogical characteristics of illite such as illite crystallinity index also is not different between two areas and show very narrow range (0.18~0.24 ${\Delta}^{\circ}2{\theta}$). Our results reveal that clay mineral composition and illite characteristics are nearly the same between northern and southern part of SEYSM. Characteristics of surface sediments in SEYSM is closer to Korean river sediments than Chinese Hanghe sediments, however it is necessary to investigate further study including Yangtze river sediments. This study conclude that most of surface sediments in SEYSM attribute to the supply of considerable amount of sediments from the nearby Korean rivers. The large sediment budget and high accumulation rate in the SEYSM can be explained by erosion and reworking of surface sediments in this area. Tidal and regional current system around SEYSM might contribute these erosional and depositional regimes.

Characteristics of Non-Spherical Manganese Nodule from the East Siberian Sea (동시베리아해 비구형 망가니즈단괴의 특성)

  • Koo, HyoJin;Park, MuSeong;Seo, ChoongMan;Cho, HyenGoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.241-253
    • /
    • 2021
  • Manganese nodules have been found in the shallow water depth of the Arctic Ocean as well as in the abyssal plains of the Pacific and Indian Oceans, but detailed study for them were rarely investigated. Manganese nodules, collected from the East Siberian Sea through the Arctic Expedition using Araon ice braking vessel, have a high potential for Mn mineral resources because they have high Mn content with high Mn/Fe ratio. This study investigated the external form, size and weight, internal texture for the non-spherical manganese nodule, which has about 7 % of total nodule from the East Siberian Sea. This study also researched the relative Mn-oxide mineral composition using the peak area ratio of X-ray diffraction pattern and their chemical composition. All data obtained from non-spherical nodules were compared with the spherical ones. Ellipsoidal, platy and irregular types are common among 5 groups of non-spherical manganese nodule based on the external form, and major axis and weight have positive relationship. All non-spherical manganese nodules have core mainly composed of mud sediments. The average Mn oxide mineral contents in nodules are birnessite, buserite and todorokite in descending order. Although mineral composition does not show any correlation with the external form, kind of core or internal structure, todorokite and buserite contents tend to increase and birnessite content decrease from the surface to the core in the nodule. Non-spherical manganese nodules have higher Mn content and Mn/Fe ratio than those from the shallow water depth of the Arctic Sea and even in the deep-sea of the Pacific and Indian Ocean. Although non-spherical nodule is larger and heavier, and has lower Mn content and Mn/Fe ratio than spherical nodule, there are not any differences in mineral composition and internal structure between them. Almost all manganese nodules collected from the East Siberian Sea are attributed to diagenetic process, because they are higher than 5 in Mn/Fe ratio.