DOI QR코드

DOI QR Code

동시베리아해 망가니즈단괴의 산화망가니즈광물 반정량 분석

Semi-quantitative Analysis of Manganese Oxide Mineral in Manganese Nodule From the East Siberian Sea

  • 유혜진 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 신은주 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 구효진 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 조현구 (경상대학교 지질과학과 및 기초과학연구소)
  • Yu, Hye Jin (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Shin, Eun Ju (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Koo, Hyo Jin (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho, Hyen Goo (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
  • 투고 : 2020.12.04
  • 심사 : 2020.12.23
  • 발행 : 2020.12.31

초록

미래의 유망 자원으로 주목받고 있는 망가니즈단괴는 태평양이나 인도양의 심해저뿐만 아니라 북극해에서도 여러 곳에서 발견되고 있다. 망가니즈단괴는 성장과정에 따라 외형, 내부조직, 화학조성 및 광물조성 등 여러 가지 특성이 달라진다. 망가니즈단괴의 성장과정에 따른 내부조직과 화학조성은 다양한 연구를 통해 비교적 잘 알려져 있으나, 정량적인 광물조성은 분명하게 밝혀진 바가 없다. 망가니즈단괴를 구성하는 산화망가니즈광물들은 입자가 매우 작고 결정도가 낮기 때문에, 정량적인 분석이 어려워 전체 시료에 대한 정성적인 결과만이 보고되고 있다. 이번 연구에서는 북극 동시베리아해 망가니즈단괴의 내부조직을 관찰하고, 조직에 따른 광물조성의 변화를 알아보았으며, X선회절분석 그래프의 피크 면적비를 이용하여 망가니즈단괴를 구성하는 3가지 주요한 산화망가니즈광물 즉, 토도로카이트, 부서라이트, 버네사이트의 반정량 분석을 시도하였다. 동시베리아해 망가니즈단괴는 버네사이트, 부서라이트, 토도로카이트 순으로 함량비가 감소하며, 내부조직과는 뚜렷한 연관성을 나타내지 않았다. 그러나 단괴 내부에서 표면으로 갈수록 토도로카이트의 함량이 감소하는 경향을 나타내는데, 그 이유는 초기 침전 이후의 재결정작용 또는 단괴 내외부의 성장 속도 차이에 의한 것으로 간주된다. 피크 면적비를 이용한 산화망가니즈광물의 반정량분석은 단괴 내부에서의 광물조성 차이를 비교하는데에 좋은 방법으로 여겨지므로, 앞으로 망가니즈단괴의 광물학적 연구에 있어 유용하게 이용될 수 있을 것으로 기대된다.

Manganese nodules, which are evaluated as potential metal resources, have been found in the Arctic Ocean as well as in the abyssal plains of the Pacific and Indian Oceans. Manganese nodules exhibit strong variations in the morphology, internal texture, chemical composition and mineralogy as they grow. The relationship between the texture and chemical elemental composition during the growth process is well documented, but the mineral composition variation during the growth process is not. Because the manganese oxide minerals in nodules are fine-grained and poorly crystalline, quantitative analysis for the mineral composition is challenging for the bulk nodule sample. This study investigated the internal texture and Mn-oxide mineral composition of manganese nodules obtained from the East Siberian Sea. Semi-quantitative analysis was attempted for three main Mn-oxide minerals constituting the manganese nodules (i.e., todorokite, buserite and birnessite) using the peak area ratio of X-ray diffraction analysis graphs. In the East Siberian Sea manganese nodules, birnessite is more abundant than buserite or todorokite, and no correlation is found between the mineral composition and the internal texture. Instead a correlation is found between the relative content of todorokite and the lamellae depth. The todorokite content tends to increase from the surface to the core of the nodules, which can be attributed to a recrystallization process or difference in the growth rate within the nodule. This study shows that semi-quantitative analysis of manganese oxide minerals using the peak area ratio is useful in the mineralogical study of manganese nodules.

키워드

참고문헌

  1. Baturin, G.N. and Dubinchuk, V. T., 2011, The composition of ferromanganese nodules of the Chukchi and East Siberian Seas. Doklady Akademii Nauk, 440, 93-99.
  2. Baturin, G.N., Dubinchuk, V.T. and Novigatsky, A.N., 2016, Phase distribution of elements in ferromanganese nodules of the Kara Sea. Doklady Akademii Nauk, 471, 334-339.
  3. Baturin, G.N., 2018, Distribution of elements in ferromanganese nodules in seas and lakes. Lithology and Mineral Resources, 54, 362-373. https://doi.org/10.1134/S002449021905002X
  4. Bau, M., Koschinsky, A., Dulski, P. and Hein, J. R., 1996, Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochimica et Cosmochimica Acta, 60, 1709-1725. https://doi.org/10.1016/0016-7037(96)00063-4
  5. Benites, M., Millo, C., Hein, J., Nath, B.N., Murton, B., Galante, D. and Jovane, L., 2018, Integrated Geochemical and morphological data provide insights into the genesis of ferromanganese nodules. Minerals, 8, 488. https://doi.org/10.3390/min8110488
  6. Biscaye, P.E., 1965, Mineralogy and sedimentation of recent deep-sea clay in the Antlantic Occeqan and adjacent seas and oceans. Geological Society of American Bulletin, 76, 803-832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
  7. Bonatti, E., Kraemer, T. and Rydell, H., 1972, Classification and genesis of submarine iron-manganese deposits. In Ferromanganese Deposits on the Ocean Floor (Ed. Horn, D.R.), NSF, Washington D.C., 149-166.
  8. Choi, H.S., Chang, S.-W. and Lee, S.-R., 2000, Correlation between mineralogical and chemical compositions of the microtextures in manganese nodules. Journal of the Mineralogical Society of Korea, 13, 205-220 (In Korean with English abstract).
  9. Giovanoil, R., 1985, A review of the todorokite-buserite problem: implications to mineralogy of marine manganese nodules: discussion. American Mineralogist, 70, 202-204.
  10. Halbach, P., and Puteanus, D., 1988, Geochemical trends of different genetic types of nodules and crusts. In The manganese nodule belt of the Pacific Ocean: Geological environment, nodule formation, and mining aspects (eds. Halbach, P., Friedrich, G. and von Stackelberg, U.), Ferdinand Enke Verlag, Stuttgart, 61-69.
  11. Hein, J.R., Mizell, K., Koschinsky, A. and Conrad, T.A., 2013, Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources. Ore Geology Reviews, 51, 1-14. https://doi.org/10.1016/j.oregeorev.2012.12.001
  12. Hein, J.R., Spinardi, F., Okamoto, N., Mizell, K., Thorburn, D. and Tawake, A., 2015, Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions. Ore Geology Reviews, 68, 97-116. https://doi.org/10.1016/j.oregeorev.2014.12.011
  13. Hein, J.R., Koschinsky, A. and Kuhn, T., 2020, Deep-ocean polymetallic nodules as a resource for critical materials. Nature Reviews Earth and Environment, 1, 158-169. https://doi.org/10.1038/s43017-020-0027-0
  14. IMA (International Mineralogical Association), 2020, The new IMA list of minerals - A work in progress - updated: September 2020. 222p.
  15. Ingri, J., 1985, Geochemistry of ferromanganese concretions in the Barents Sea. Marine Geology, 67, 101-119. https://doi.org/10.1016/0025-3227(85)90150-1
  16. Kim, C.-M., Jeong, J.O., Gu, D. and Han, R., 2017, Identification of materials in principal slip zones of faults by X-ray diffraction analysis using a small amount of sample. Journal of the Geological Society of Korea, 53, 873-883. https://doi.org/10.14770/jgsk.2017.53.6.873
  17. Kolesnik, O.N. and Kolesnik, A.N., 2013, Specific chemical and mineral composition of ferromanganese nodules from the Chukchi Sea. Russian Geology and Geophysics, 54, 653-663. https://doi.org/10.1016/j.rgg.2013.06.001
  18. Koo, H.J., Cho, H.G., Yoo, C.M. and Jin, Y.K., 2017, Characteristics of manganese nodule from the East Siberian Sea. Journal of the Mineralogical Society of Korea, 30, 219-227 (In Korean with English abstract). https://doi.org/10.9727/jmsk.2017.30.4.219
  19. Kuhn, T., Bostick, B.C., Koschinsky, A., Halbach, P. and Fendorf, S., 2003, Enrichment of Mo in hydrothermal Mn precipitates: possible Mo sources, formation process and phase associations. Chemical Geology, 199, 29-43. https://doi.org/10.1016/S0009-2541(03)00054-8
  20. Kuhn, T., Wegorzewski, A., Ruhlemann, C., and Vink, A., 2017, Composition, formation, and occurrence of polymetallic nodules. In deep-sea mining (ed. Sharma, R.), Springer, Cham, 23-63.
  21. Lee, C.H., Lee, S.R. and Chang, S.W., 1996, Internal texture, geochemistry and mineralogy of manganese nodules from the Clarion-Clipperton fracture zones, Pacific. Journal of the Geological Society of Korea, 32, 187-198 (In Korean with English abstract).
  22. Murton, B.J., 2001, A global review of non-living resources on the extended continental shelf. Brazilian Journal of Geophysics, 18, 281-306.
  23. Pal'chik, N.A., Grigor'eva, T.N., and Moroz, T.N., 2013, Natural and synthetic manganese minerals. Russian Journal of Inorganic Chemistry, 58, 138-143. https://doi.org/10.1134/S0036023612120169
  24. Sorem, R.K. and Fewkes, R.H., 1979, Manganese nodules, research data and methods of investigation. Plenum, New York, 732p.
  25. Szamalek, K., Uscinowicz, S. and Zglinicki, Karol., 2018, Rare earth elements in Fe-Mn nodules from the southern Baltic Sea - A preliminary study. Biuletyn Panstwowego Instytutu Geologicznego, 472, 199-212. https://doi.org/10.5604/01.3001.0012.7118
  26. Vereshchagin, O.S., Perova, E.N., Brusnitsyn, A.I., Ershova, V.B., Khudoley, A.K., Shilovskikh, V.V. and Molchanov, E.V., 2019, Ferro-manganese nodules from the Kara Sea: Mineralogy, geochemistry and genesis. Ore Geology Reviews, 106, 192-204. https://doi.org/10.1016/j.oregeorev.2019.01.023
  27. Wegorzewski, A.V. and Kuhn, T., 2014, The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean. Marine Geology, 357, 123-138. https://doi.org/10.1016/j.margeo.2014.07.004
  28. Wegorzewski, A.V., Kuhn, T., Dohrmann, R., Wirth, R. and Grangeon, S., 2015, Mineralogical characterization of individual growth structures of Mn-nodules with different Ni+Cu content from the central Pacific Ocean. American Mineralogist, 100, 2497-2508. https://doi.org/10.2138/am-2015-5122