• Title/Summary/Keyword: semi-conductive layer

Search Result 18, Processing Time 0.031 seconds

A Study on the Prevention of Crack Generated in Interface Cu and Epoxy with Painting of Carbon (카본 도포에 따른 Cu-Epoxy 접촉면에서 발생하는 크랙방지에 관한 연구)

  • 송재주;김성훈;황종선;박종광;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.7
    • /
    • pp.578-583
    • /
    • 2001
  • The bushing for high voltage and large and power should endure weight of itself and force of pushing from contact with circuit breaker. Like this, epoxy mold bushing has to be strong without fault. However, the external circumstances and internal factors was caused by partial discharge, flashover and dielectric breakdown. Therefore, to remove external factor of defect and to prevent the internal cracks and cavity generated from the contraction on interface of Cu-Epoxy, we should form semi-conductive layer on Cu bar by carbon. Then, the PD properties and the insulation qualities of epoxy mold type bushing was able to improved by roles of cushions for the direction of diameter and by effects fo natural sliding like as separated from conductor for the direction of length. So, in this work, we could prove the method of semi-conductive layer in making the long conductor.

  • PDF

Improvement of Interfacial Performances on Insulating and Semi-conducting Silicone Polymer Joint by Plasma-treatment

  • Lee, Ki-Taek;Huh, Chang-Su
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.16-20
    • /
    • 2006
  • In this paper, we investigated the effects of short-term oxygen plasma treatment of semiconducting silicone layer to improve interfacial performances in joints prepared with a insulating silicone materials. Surface characterizations were assessed using contact angle measurement and x-ray photoelectron spectroscopy (XPS), and then adhesion level and electrical performance were evaluated through T-peel tests and electrical breakdown voltage tests of treated semi-conductive and insulating joints. Plasma exposure mainly increased the polar component of surface energy from $0.21\;dyne/cm^2$ to $47\;dyne/cm^2$ with increasing plasma treatment time and then leveled off. Based on XPS analysis, the surface modification can be mainly ascribed to the creation of chemically active functional groups such as C-O, C=O and COH on semi-conductive silicone surface. This oxidized rubber layer is inorganic silica-like structure of Si bound with three to four oxygen atoms ($SiO_x,\;x=3{\sim}4$). The oxygen plasma treatment produces an increase in joint strength that is maximum for 10 min treatment. However, due to brittle property of this oxidized layer, the highly oxidized layer from too much extended treatment could be act as a weak point, decreasing the adhesion strength. In addition, electrical breakdown level of joints with adequate plasma treatment was increased by about $10\;\%$ with model samples of joints prepared with a semi-conducting/ insulating silicone polymer after applied to interface.

The Improvement on Insulation Performance of Underground Distribution Power Cables (지중배전케이블 절연성능 향상 방안)

  • Lee, Jae-Bong;Lee, Byung-Sung;Kim, Sang-Joon;Jang, Sang-Ok;Han, Yong-Huei;Oh, Jae-Hyoung
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.497-501
    • /
    • 2004
  • The primary failure causes of underground distribution power cables are water penetration in insulation layer and stress enhancement at inner semi-conductive layer. Accordingly, it is needed to improve the materials and the structure of power cables for extending lifetime and preventing failure. We uses non-flaming PE materials instead of PVC as a covering material and encapsulating structure. We also use super smooth class material as a inner semi-conductive layer. The newly developed cables are improved in AC breakdown voltage after ageing tests.

  • PDF

The Effect of Plasma Treatment on Surface Properties and Adhesion Characteristics of semiconductive Silicone Rubber (반도전성 실리콘 고무의 표면 특성과 접착특성에 미치는 플라즈마 처리의 영향)

  • Hwang, Sun-Mook;Hong, Joo-Il;Hwang, Cheong-Ho;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.254-255
    • /
    • 2005
  • In this work, the effects of plasma treatment on surface properties of semi conductive silicone rubber were investigated in terms of X-ray photoelectron spectroscopy(XPS). The adhesion characteristics of semiconductive-insulating interface layer of silicone rubber were studied by measuring the T-peel strengths. As a result, semiconductive silicone rubber surfaces treated with plasma discharge led to and increase in oxygen-containing functional groups, resulting in improving the degree of adhesion of the semiconductive-insulating interface layer of silicone rubber. these results are probably due to the modifications of surface functional groups or polar component of surface free energy of the semi conductive silicone rubber.

  • PDF

Effect of CNTs on Electrical Properties and Thermal Expansion of Semi-conductive Compounds for EHV Power Cables

  • Jae-Gyu Han;Jae-Shik Lee;Dong-Hak Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.603-608
    • /
    • 2023
  • Carbon black with high purity and excellent conductivity is used as a conductive filler in the semiconductive compound for EHV (Extra High Voltage) power cables of 345 kV or higher. When carbon black and CNT (carbon nanotube) are applied together as a conductive filler of a semiconductive compound, stable electrical properties of the semiconductive compound can be maintained even though the amount of conductive filler is significantly reduced. In EHV power cables, since the semi-conductive layer is close to the conductor, stable electrical characteristics are required even under high-temperature conditions caused by heat generated from the conductor. In this study, the theoretical principle that a semiconductive compound applied with carbon black and CNT can maintain excellent electrical properties even under high-temperature conditions was studied. Basically, the conductive fillers dispersed in the matrix form an electrical network. The base polymer and the matrix of the composite, expands by heat under high temperature conditions. Because of this, the electrical network connected by the conductive fillers is weakened. In particular, since the conductive filler has high thermal conductivity, the semiconductive compound causes more thermal expansion. Therefore, the effect of CNT as a conductive filler on the thermal conductivity, thermal expansion coefficient, and volume resistivity of the semiconductive compound was studied. From this result, thermal expansion and composition of the electrical network under high temperature conditions are explained.

인쇄전자를 위한 롤투롤 프린팅 공정 장비 기술

  • Kim, Dong-Su;Kim, Chung-Hwan;Kim, Myeong-Seop
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.15.2-15.2
    • /
    • 2009
  • Manufacturing of printed electronics using printing technology has begun to get into the hot issue in many ways due to the low cost effectiveness to existing semi-conductor process. This technology with both low cost and high productivity, can be applied in the production of organic thin film transistor (OTFT), solar cell, radio frequency identification (RFID) tag, printed battery, E-paper, touch screen panel, black matrix for liquid crystal display (LCD), flexible display, and so forth. The emerging technology to manufacture the products in mass production is roll-to-roll printing technology which is a manufacturing method by printings of multi-layered patterns composed of semi-conductive, dielectric and conductive layers. In contrary to the conventional printing machines in which printing precision is about $50~100{\mu}m$, the printing machines for printed electronics should have a precision under $30{\mu}m$. In general, in order to implement printed electronics, narrow width and gap printing, register of multi-layer printing by several printing units, and printing accuracy of under $30{\mu}m$ are all required. We developed the roll-to-roll printing equipment used for printed electronics, which is composed of un-winder, re-winder, tension measurement system, feeding units, dancer systems, guide unit, printing unit, vision system, dryer units, and various auxiliary devices. The equipment is designed based on cantilever type in which all rollers except printing ones have cantilever types, which could give more accurate machine precision as well as convenience for changing rollers and observing the process.

  • PDF

The solution for preventing the expansion of cable joint caused by methane($CH_4$) gas to Water proof type of power cable (도체 수밀형 전력케이블의 가교잔사 가스에 의한 직선접속재 부풀음 현상 방지 대책)

  • Kim, Jong-Won;Lee, Ki-Soo;Paek, Heum-Soo;Choi, Bong-Nam;Park, Hee-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2020-2022
    • /
    • 2000
  • The cross-linked polyethylene(herein after XLPE) insulated power cable emit the methane($CH_4$)gas in the course of chemical cross-linking process. The general stranded conductor easily discharge this methane gas through the gap of each stranded wires. But the special stranded conductor that filled with semi-conducting rubber compound to prevent water penetration which is applied to water proof type of cable(22.9kV CN/CV-W), disturb the methane gas emission. The pre-mold type cable joint shall be expanded gradually by emit of gas left in XLPE insulation. For example, sometimes the corona problem outbreak on a new power distribution line, resulted from the gap between the sleeve and semi-conductive layer of cable joint. If above mentioned problem especially happened on the way of operating. We have to shut down the line and try to discharge the methane gas in cable joint. In this point, we would like to explain the mechanism of methane gas & cable joint and our test result briefly. At last, we are pleased to introduce the solution for preventing reoccurrence of this problem.

  • PDF

Characteristics of photo-thermal reduced Cu film using photographic flash light

  • Kim, Minha;Kim, Donguk;Hwang, Soohyun;Lee, Jaehyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.293.1-293.1
    • /
    • 2016
  • Various materials including conductive, dielectric, and semi-conductive materials, constitute suitable candidates for printed electronics. Metal nanoparticles (e.g. Ag, Cu, Ni, Au) are typically used in conductive ink. However, easily oxidized metals, such as Cu, must be processed at low temperatures and as such, photonic sintering has gained significant attention as a new low-temperature processing method. This method is based on the principle of selective heating of a strongly absorbent film, without light-source-induced damage to the transparent substrate. However, Cu nanoparticles used in inks are susceptible to the growth of a native copper-oxide layer on their surface. Copper-oxide-nanoparticle ink subjected to a reduction mechanism has therefore been introduced in an attempt to achieve long-term stability and reliability. In this work, a flash-light sintering process was used for the reduction of an inkjet-printed Cu(II)O thin film to a Cu film. Using a photographic lighting instrument, the intensity of the light (or intense pulse light) was controlled by the charged power (Ws). The resulting changes in the structure, as well as the optical and electrical properties of the light-irradiated Cu(II)O films, were investigated. A Cu thin film was obtained from Cu(II)O via photo-thermal reduction at 2500 Ws. More importantly, at one shot of 3000 Ws, a low sheet resistance value ($0.2527{\Omega}/sq.$) and a high resistivity (${\sim}5.05-6.32{\times}10^{-8}{\Omega}m$), which was ~3.0-3.8 times that of bulk Cu was achieved for the ~200-250-nm-thick film.

  • PDF

PD Localization by Metal Sheath Interruption Methods for Power Cable and Accessories (차폐분리에 의한 전력케이블 및 접속함의 부분방전 위치 검출)

  • Lee, Chang-Yeong;Sin, Du-Seong;Kim, Chung-Sik;Kim, Dong-Uk;Park, Wan-Gi
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.3
    • /
    • pp.196-201
    • /
    • 2000
  • It is very important not only to detect PD signal but also to locate PD source in power cable line including its accessories. In this paper, the PID localization technique using interruption of metal sheath of cable or accessory is described. By interruption of metal sheath, the polarity of PD pulse to be measured on each part can be compared. With this technique, the exact location of PD in the accessory which has some defects can be found. Although the 'Soft' interruption method, that is, cable sheath is divided by semi-conductive layer with the resistance of higher than 1 k$\Omega$, was used instead of 'Hard' interruption method, it is also possible to detect exact location of PD. This technique is considered to be very effective for detecting PD localization in the type test of cable and accessories.

  • PDF

Reformation of Dielectric Property in interface between epoxy and Cu (Epoxy-Cu간 접촉면에서의 절연특성 개선)

  • 송재주;김성홍;정남성;황종선;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.9-12
    • /
    • 2000
  • Insulators for high-voltage and large-power should be endured mechanically the weight of mold bushing itself and the force of pushed from contact with circuit breaker and conductor. But dielectric breakdown could be occurred result from the external circumstances and internal factors such as chemical reaction, partial discharge, change of temperature and the relation of temperature-time in process of casting. Therefore, to get rid of external and internal factors of dielectric breakdown. Furthermore, to prevent the internal cracks, void, cavity which resulted from the contraction originated on the interface between copper and epoxy resin, formed semi-conductive layer with partially carbon painted on copper bar. The PD properties and the insulation qualities of epoxy molded insulators were improved by roles of cushions for the direction of diameter and natural sliding effects as like separated from conductor for the direction of length.

  • PDF