• Title/Summary/Keyword: semantic topic

Search Result 190, Processing Time 0.057 seconds

The study on the design of Korean Medical Article Retrieval System Supporting Semantic Navigation based on Ontology (의미 네비게이션을 지원하는 온톨로지 기반 한의학 논문 검색 시스템 설계 연구)

  • Ko, You-Mi;Eom, Dong-Myung
    • Korean Journal of Oriental Medicine
    • /
    • v.11 no.2
    • /
    • pp.35-52
    • /
    • 2005
  • This study is to design a Semantic Navigation Retrieval System for Oriental Medicine Articles based on a XTM so that people can search and use them more effectively than before. Keywords extracted from articles are categorized 4 topics : herbs, prescription, disease, and action. Keywords analysis Ontology is modeled based on 4 topics and their relations, and then represented Topic maps. Next, Article analysis Ontology is consist of title, author, keywords, abstracts and organization Topics from metadata. Keywords and Article analysis Ontology were integrated through Keywords Topic. Korean Medical Article Retrieval System is optimistic in terms on search results supporting semantic navigation in the information service aspects and easier accessibility because all related information are semantically connected with each different DBs.

  • PDF

Representing Topic-Comment Structures in Chinese

  • Pan, Haihua;Hu, Jianhua
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2002.02a
    • /
    • pp.382-390
    • /
    • 2002
  • Shi (2000) claims that topics must be related to a syntactic position in the comment, thus denying the existence of dangling topics in Chinese. Under Shi's analysis, the dangling topic sentences in Chinese are not topic-comment but subject-predicate sentences. However, Shi's arguments are not without problems. In this paper we argue that topics in Chinese can be licensed not only by a syntactic gap but also by a semantic gap/variable without syntactic realization. Under our analysis, all the dangling topics discussed in Shi (2000) are, in fact, not subjects but topics licensed by a semantic gap/variable that can turn the relevant comment into an open predicate, thus licensing dangling topics and deriving well-formed topic-comment constructions. Our analysis fares better than Shi's in not only unifying the licensing mechanism of a topic to an open predicate without considering how the open predicate is derived, but also unifying the treatment of normal and dangling topics in Chinese,

  • PDF

Design and Implementation of Topic Map Generation System based Tag (태그 기반 토픽맵 생성 시스템의 설계 및 구현)

  • Lee, Si-Hwa;Lee, Man-Hyoung;Hwang, Dae-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.730-739
    • /
    • 2010
  • One of core technology in Web 2.0 is tagging, which is applied to multimedia data such as web document of blog, image and video etc widely. But unlike expectation that the tags will be reused in information retrieval and then maximize the retrieval efficiency, unacceptable retrieval results appear owing to toot limitation of tag. In this paper, in the base of preceding research about image retrieval through tag clustering, we design and implement a topic map generation system which is a semantic knowledge system. Finally, tag information in cluster were generated automatically with topics of topic map. The generated topics of topic map are endowed with mean relationship by use of WordNet. Also the topics are endowed with occurrence information suitable for topic pair, and then a topic map with semantic knowledge system can be generated. As the result, the topic map preposed in this paper can be used in not only user's information retrieval demand with semantic navigation but alse convenient and abundant information service.

Design of The Environment for a Realtime Data Integration based on TMDR (TMDR 기반의 실시간 데이터 통합 환경 설계)

  • Jung, Kye-Dong;Hwang, Chi-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1865-1872
    • /
    • 2009
  • This study suggests a method for extending XMDR to integrate and search legacy system. This extension blends MSO(Meta Semantic Ontology) for the management of metadata, ML(Meta Location) for the management of location information, and Topic Map which is the standard language used to represent semantic web. This study refers to it as TMDR(Topic Map MetaData Registry). As an intelligent layer, Topic Map functions like an index. However, if the data frequently changes, the efficiency of Topic Map may drop. To solve this problem, the proposed system represents the relation among metadata, the relation among real data, and the relation between metadata and real data as Topic Map. The represented Topic Map proposes a method to reduce the changing relation among real data caused by the relation among metadata.

A Study on Research Trend for Nurses' Workplace Bullying in Korea: Focusing on Semantic Network Analysis and Topic Modeling (간호사의 직장 내 괴롭힘에 대한 국내 연구 동향 분석: 의미연결망분석과 토픽모델링 중심)

  • Choi, Jeong Sil;Kim, Youngji
    • Korean Journal of Occupational Health Nursing
    • /
    • v.28 no.4
    • /
    • pp.221-229
    • /
    • 2019
  • Purpose: The aim of this study was to identify core keywords and topic groups of workplace bullying researches in the past 10 years for better understanding research trend. Methods: The study was conducted in four steps: 1) collecting abstracts, 2) extracting and cleaning semantic morphemes, 3) building co-occurrence matrix and 4) analyzing network features and clustering topic groups. Results: 437 articles between 2010 and 2019 were retrieved from 5 databases (RISS, NDSL, Google scholar, DBPIA and Kyobo Scholar). Forty-one abstracts from these articles were extracted, and network analysis was conducted using semantic network module. The most important core keywords were 'turnover', 'intention', 'factor', 'program' and 'nursing'. Four topic groups were identified from Korean databases. Major topics were 'turnover' and 'organization culture'. Conclusion: After reviewing previous research, it has been found that turnover intention has been emphasized. Further research focused on various intervention is needed to relieve workplace bullying in nursing field.

A Comparison of Ontology Languages: Focusing on W3C OWL and ISO Topic Maps (온톨로지 언어의 비교 연구: W3C OWL과 ISO 토픽맵을 중심으로)

  • Oh, Sam-Gyun
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.15 no.2
    • /
    • pp.71-96
    • /
    • 2004
  • The purpose of this study is to describe major concepts related to W3C OWL and ISO Topic Maps and to provide the result of comparison and analysis regarding semantic expression power between two ontology languages. This paper is comprised of the following parts: 1) describing URI and namespace concepts that are fundamental building block of effective ontology construction; 2) offering detailed explanation of major Topic Map concepts such as topics, associations, and occurrences; 3) providing how to accomplish the second purpose of cataloging(grouping related items when displaying the search result) using Topic Map; and 4) finally explaining the difference between two ontology languages in terms of semantic expression power.

  • PDF

Topic Expansion based on Infinite Vocabulary Online LDA Topic Model using Semantic Correlation Information (무한 사전 온라인 LDA 토픽 모델에서 의미적 연관성을 사용한 토픽 확장)

  • Kwak, Chang-Uk;Kim, Sun-Joong;Park, Seong-Bae;Kim, Kweon Yang
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.9
    • /
    • pp.461-466
    • /
    • 2016
  • Topic expansion is an expansion method that reflects external data for improving quality of learned topic. The online learning topic model is not appropriate for topic expansion using external data, because it does not reflect unseen words to learned topic model. In this study, we proposed topic expansion method using infinite vocabulary online LDA. When unseen words appear in learning process, the proposed method allocates unseen word to topic after calculating semantic correlation between unseen word and each topic. To evaluate the proposed method, we compared with existing topic expansion method. The results indicated that the proposed method includes additional information that is not contained in broadcasting script by reflecting external documents. Also, the proposed method outperformed on coherence evaluation.

Sentiment Analysis Model with Semantic Topic Classification of Reviews (리뷰의 의미적 토픽 분류를 적용한 감성 분석 모델)

  • Lim, Myung Jin;Kim, Pankoo;Shin, Ju Hyun
    • Smart Media Journal
    • /
    • v.9 no.2
    • /
    • pp.69-77
    • /
    • 2020
  • Unlike the past, which was limited to terrestrial broadcasts, many dramas are currently being broadcast on cable channels and the Internet web. After watching the drama, viewers actively express their opinions through reviews and studies related to the analysis of these reviews are actively being conducted. Due to the nature of the drama, the genre is not clear, and due to the various age groups of viewers, reviews and ratings from other viewers help to decide which drama to watch. However, since it is difficult for viewers to check and analyze many reviews individually, a data analysis technique is required to automatically analyze them. Accordingly, this paper classifies the topics of reviews that have an important influence on drama selection and reclassifies them into semantic topics according to the similarity of words. In addition, we propose a model that classifies reviews into sentences according to semantic topics and sentiment analysis through sentiment words.

Design and Implementation of Intelligent Web Service Discovery System based on Topic Maps (토픽 맵 기반의 지능적 웹서비스 발견 시스템 설계 및 구현)

  • Hwang, Yun-Young;Yu, Jeong-Youn;You, So-Yeon;Lee, Kyu-Chul
    • The Journal of Society for e-Business Studies
    • /
    • v.9 no.4
    • /
    • pp.85-102
    • /
    • 2004
  • Currently, developed technologies for semantic web services discovery are based on ontologies. These ontologies are DAML-S(DARPA Agent Markup Language for Services) and Process Handbook Project of MIT. These technologies have some problems for intelligent web services discovery. So, in this paper we analyzed those ontologies and proposed TM-S, Topic Maps for Services. TM-S is the presentation model for semantic web services. And TM-S includes benefits and complements weaknesses of those ontologies. And we proposed TMS-QL, TM-S Query Language. TMS-QL is query language for intelligent web services discovery. At last, we designed and implemented intelligent web service discovery system that deals TM-S ontology and TMS-QL

  • PDF

Multiple Cause Model-based Topic Extraction and Semantic Kernel Construction from Text Documents (다중요인모델에 기반한 텍스트 문서에서의 토픽 추출 및 의미 커널 구축)

  • 장정호;장병탁
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.595-604
    • /
    • 2004
  • Automatic analysis of concepts or semantic relations from text documents enables not only an efficient acquisition of relevant information, but also a comparison of documents in the concept level. We present a multiple cause model-based approach to text analysis, where latent topics are automatically extracted from document sets and similarity between documents is measured by semantic kernels constructed from the extracted topics. In our approach, a document is assumed to be generated by various combinations of underlying topics. A topic is defined by a set of words that are related to the same topic or cooccur frequently within a document. In a network representing a multiple-cause model, each topic is identified by a group of words having high connection weights from a latent node. In order to facilitate teaming and inferences in multiple-cause models, some approximation methods are required and we utilize an approximation by Helmholtz machines. In an experiment on TDT-2 data set, we extract sets of meaningful words where each set contains some theme-specific terms. Using semantic kernels constructed from latent topics extracted by multiple cause models, we also achieve significant improvements over the basic vector space model in terms of retrieval effectiveness.