• 제목/요약/키워드: semantic network

검색결과 757건 처리시간 0.04초

구조적 유사성을 이용한 UMLS 의미망 군집 방법 (UMLS Semantic Network Automatic Clustering Method using Structural Similarity)

  • 지영신;전혜경;정헌만;이정현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 컴퓨터소사이어티 추계학술대회논문집
    • /
    • pp.223-226
    • /
    • 2003
  • Because UMLS semantic network is bulky and complex, user hard to understand and has shortcoming that can not express all semantic network on screen. To solve this problem, rules to dismember semantic network efficiently are introduction. but there is shortcoming that this should classifies manually applying rule whenever UMLS semantic network is modified. Suggest automatic clustering method of UMLS semantic network that use genetic algorithm to solve this problem. Proposed method uses Linked semantic relationship between each semantic type and semantic network does clustering by structurally similar semantic type linkages. To estimate the performance of suggested method, we compared it with result of clustering method by rule.

  • PDF

의미간의 유사도 연구의 패러다임 변화의 필요성-인지 의미론적 관점에서의 고찰 (The Need for Paradigm Shift in Semantic Similarity and Semantic Relatedness : From Cognitive Semantics Perspective)

  • 최영석;박진수
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.111-123
    • /
    • 2013
  • 개념간의 의미적 유사도 및 관계도(Semantic Similarity/Relatedness)를 구하는 연구는 고전적인 연구에서는 데이터 베이스 통합이나 시스템 통합, 그리고 현대의 연구에 있어서는 태그 및 키워드 추출, 연관 단어 추천 등에 걸쳐 다양한 분야에서 활용되어 온 연구이다. 그 연구는 역사가 오래되었을 뿐만 아니라, 경영정보와 컴퓨터 공학, 계산 언어학에 걸쳐 여러 분야에서도 많은 관심을 가져왔던 연구 분야라고 할 수 있다. 그러나, 지금까지의 개념간의 관계도 계산 방식은 미리 만들어진 사전이나 참조할 수 있는 다른 시맨틱 네트워크(Semantic Network)를 이용하여 계산하는 방법이 주를 이루었다. 이러한 접근 방법의 경우, 개념간의 의미적 관계가 변화에 대한 가능성을 고려하지 않는 것이 일반적이다. 하지만, 정보 기술의 발달과 빠른 사회변화는 개념간의 의미관계 등에 변화를 가져오고 있는 것이 현실이다. 사회적으로 일어나는 사건이나, 문화적 변화 등이 개념간의 의미관계를 변화시키는 것을 물론이며, 이러한 변화가 정보 통신 기술의 도움으로 빠르게 공유되고 있다. 이렇게 개념간의 의미 관계가 시간이나 맥락에 따라 빠르게 변화할 수 있는 가능성이 있음에도 불구하고, 기존의 개념간 의미적 유사도 및 관계도에 대한 연구들은 이러한 '의미관계의 변화'에 대한 새로운 문제에 대해 해답을 제시하지 못한 것이 사실이다. 따라서, 본 연구에서는 개념간의 유사도 연구에 있어 지금까지 있어왔던 '정적인 의미간 관계도 패러다임'에서 '동적인 의미간 관계도 패러다임'으로의 전환의 필요성과 그 당위성을 인지 의미론적(Cognitive Semantics)의 관점에서 역설하고자 한다. 인간이 인지하는 개념간의 의미관계가 변화할 수 있는 이론적 근거를 인지 의미론에서 찾아봄으로써, 패러다임 변화의 방향을 구체적으로 제시하였다. 또한 이러한 패러다임의 변화에 맞추어 개념간의 의미적 유사도 및 관계도에 대한 연구가 어떠한 방향으로 나아가야 할지 구체적인 연구 방향을 제시함으로써 관련 연구자들에게 새로운 연구의 가이드라인을 제시하였다.

초고층아파트 주거공간에 나타난 동선의 의미적 네트워크 체계에 관한 연구 (A Study on the semantic network system of the line of flow appearing on the residential space of super high-rise apartments)

  • 윤재은;김주희
    • 한국실내디자인학회논문집
    • /
    • 제16권3호
    • /
    • pp.58-65
    • /
    • 2007
  • The residential space of super high-rise buildings, having a form of a huge three-dimensional vertical city, affect the residents psychologically and qualitatively according to the line of flow. Because of these affects, the system of the line of flows is a very important factor. In this study, we recognize the super high-rise apartment's line of flow as a semantic network system based on case studies. And we also understand the mutual relationship by analyzing each space to recognize what effect it does on the residential environment. Furthermore, to bring up a better semantic network system for super high-rise apartment's line of flows is our goal. According to the case studies, the semantic network of the line of flow consists of 3 parts: the functional network, economical network and unit network. The functional network is composed of the 'need' and 'has', while the economical network includes variable walls that can be changed following the user's taste and eccentric positioned living rooms that protect personal privacy. Therefore the economical network started to appear while the personal value changed according to the improvement of the social condition. Finally, the unit network is a network that effects each unit that has ambiguous boundaries due to the appropriate arrangement between transitional spaces. And the unit network is based on the functional network.

안개영상의 의미론적 분할 및 안개제거를 위한 심층 멀티태스크 네트워크 (Deep Multi-task Network for Simultaneous Hazy Image Semantic Segmentation and Dehazing)

  • 송태용;장현성;하남구;연윤모;권구용;손광훈
    • 한국멀티미디어학회논문지
    • /
    • 제22권9호
    • /
    • pp.1000-1010
    • /
    • 2019
  • Image semantic segmentation and dehazing are key tasks in the computer vision. In recent years, researches in both tasks have achieved substantial improvements in performance with the development of Convolutional Neural Network (CNN). However, most of the previous works for semantic segmentation assume the images are captured in clear weather and show degraded performance under hazy images with low contrast and faded color. Meanwhile, dehazing aims to recover clear image given observed hazy image, which is an ill-posed problem and can be alleviated with additional information about the image. In this work, we propose a deep multi-task network for simultaneous semantic segmentation and dehazing. The proposed network takes single haze image as input and predicts dense semantic segmentation map and clear image. The visual information getting refined during the dehazing process can help the recognition task of semantic segmentation. On the other hand, semantic features obtained during the semantic segmentation process can provide cues for color priors for objects, which can help dehazing process. Experimental results demonstrate the effectiveness of the proposed multi-task approach, showing improved performance compared to the separate networks.

외식프랜차이즈 기업의 해외진출 전략에 관한 사례연구 (A Case Study on the Overseas Expansion Strategy of a Franchise Restaurant)

  • 정성목;이일한
    • 한국프랜차이즈경영연구
    • /
    • 제14권3호
    • /
    • pp.17-35
    • /
    • 2023
  • Purpose: As more and more food franchise companies want to expand overseas, related research is becoming more and more necessary. This study aims to examine the critical factors for successful overseas expansion according to the stages of overseas expansion, derive vital associations, and examine the success factors of overseas expansion through semantic network analysis. Research Design, Data, and Methodology: This study conducted in-depth interviews with three food franchise companies that have experienced overseas expansion and conducted semantic network analysis among crucial associations. The semantic network analysis was conducted using the Textom program. Results: Based on the results of the in-depth interview analysis, the factors considered when expanding overseas were categorized as 1) standardization and localization strategies of overseas franchisees, 2) physical environment of overseas franchisees, 3) entry types of overseas franchisees, 4) constraints of overseas franchisees, and 5) success criteria of overseas franchisees. The semantic network analysis based on the corresponding keywords showed that the importance of local partners is very high in common. Conclusion: This study examined and re-categorized the important factors to consider when a restaurant franchise company expands overseas in a step-by-step manner. In addition, an attempt was made to examine the keywords derived from the semantic network analysis objectively. The results provided theoretical and practical implications for the successful overseas expansion of franchise companies.

한국어 동사 의미처리를 위한 SENKOV의 구축과 공기제약 관계에의 활용 (Implementation of SENKVO and Its Application to the Selectional Restriction for Semantic Analysis of Korean Verbs)

  • 고병수;정성훈;문유진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.177-179
    • /
    • 1998
  • 본 논문은 의미론적 어휘개념에 기반한 한국어 동사 Isa 계층구조 시스템을 이용한 Semantic Network을 구축하며, 이를 활용하여 부사와 동사 간의 공기제약관계 설정에 유효한 개념 분류를 수행한다. 일반적으로 많이 쓰이는 한국어 동사 658개를 대상으로 semantic network을 구축한 결과, SENKOV는 44개의 top node를 가지고 있으며 depth 는 약 2.35이었다. 한국어 동사의 semantic network은 영어에서와 마찬가지로 명사보다 top node의 개수가 많고 depth가 훨씬 더 얕았다. 그리고 성상부사의 selectional restriction에 유효한 개념분류를 하는데 SENKOV를 활용하였다.

  • PDF

개념 검색의 신경회로망 모델에 관한 연구 (A Study Nuenal Model of Concept Retrieval)

  • 고용훈;박상희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.450-456
    • /
    • 1990
  • In this paper, production system is implemented with the inferential neural network model using semantic network and directed graph. Production system can be implemented with the transform of knowledge representation in production system into semantic network and of semantic network into directed graph, because directed graphs can be expressed by neural matrices. A concept node should be defined by the state vector to calculated the concepts expressed by matrices. The expressional ability of neunal network depends on how the state vector is defined. In this study, state vector is overlapped and each overlapping part acts as a inheritant of concept.

  • PDF

U-WIN을 이용한 한국어 복합명사 분해 및 의미태깅 시스템 (Korean Compound Noun Decomposition and Semantic Tagging System using User-Word Intelligent Network)

  • 이용훈;옥철영;이응봉
    • 정보처리학회논문지B
    • /
    • 제19B권1호
    • /
    • pp.63-76
    • /
    • 2012
  • 본 논문에서는 통계기반의 복합명사 분해 방법과 어휘의미망(U-WIN)과 사전 뜻풀이에서 추출한 의미관계 정보를 이용하는 한국어 복합명사 의미 태깅 시스템을 제안한다. 본 시스템은 크게 복합명사 분해, 의미제약, 그리고 의미 태깅의 세 가지 부분으로 이루어진다. 분해과정은 세종말뭉치에서 추출한 위치별명사 빈도를 사용하여 최적의 구성 명사 분해 후보를 선정하고 의미제약을 위한 구성 명사 재분해와 외래어 복원의 과정을 수행한다. 의미범위 제약과정은 유사도 비교의 계산량을 줄이고 정확도를 높이기 위해 원어 정보와 Naive Bayes Classifier를 이용해 가능한 경우 구성 명사의 의미를 선 제약한다. 의미 분석 및 태깅 과정에서는 bigram 구성 명사의 각 의미 유사도를 구하고 하나의 체인을 만들어가며 태깅을 수행한다. 본 시스템의 성능 평가를 위해 표준국어대사전에서 추출한 3음절 이상의 40,717개의 복합명사를 대상으로 의미 태깅된 테스트 셋을 구축하였다. 이를 이용한 실험에서 99.26%의 분해 정확도를 보였으며, 95.38%의 의미 분석 정확도를 보였다.

A Semantic Service Discovery Network for Large-Scale Ubiquitous Computing Environments

  • Kang, Sae-Hoon;Kim, Dae-Woong;Lee, Young-Hee;Hyun, Soon-J.;Lee, Dong-Man;Lee, Ben
    • ETRI Journal
    • /
    • 제29권5호
    • /
    • pp.545-558
    • /
    • 2007
  • This paper presents an efficient semantic service discovery scheme called UbiSearch for a large-scale ubiquitous computing environment. A semantic service discovery network in the semantic vector space is proposed where services that are semantically close to each other are mapped to nearby positions so that the similar services are registered in a cluster of resolvers. Using this mapping technique, the search space for a query is efficiently confined within a minimized cluster region while maintaining high accuracy in comparison to the centralized scheme. The proposed semantic service discovery network provides a number of novel features to evenly distribute service indexes to the resolvers and reduce the number of resolvers to visit. Our simulation study shows that UbiSearch provides good semantic searchability as compared to the centralized indexing system. At the same time, it supports scalable semantic queries with low communication overhead, balanced load distribution among resolvers for service registration and query processing, and personalized semantic matching.

  • PDF

Study on Design Research using Semantic Network Analysis

  • Chung, Jaehee;Nah, Ken;Kim, Sungbum
    • 대한인간공학회지
    • /
    • 제34권6호
    • /
    • pp.563-581
    • /
    • 2015
  • Objective: This study was conducted to investigate the potential of sematic network analysis for design research. Background: As HCD (Human-Centered Design) was emphasized, lots of design research methodologies were developed and used in order to find user needs. However, it is still difficult to discover users' latent needs. This study suggests the semantic network analysis as a complementary means for design research, and proved its potential through the practical application, which compares multi-screen purchase and usage behaviors between America and China. Method: We conducted an in-depth interview with 32 consumers from USA and China, and analyzed interview texts through semantic network analysis. Cross cultural differences in purchase and usage behaviors were investigated, based on measuring centrality and community modularity of devices, functions, key buying factors and brands. Results: Americans use more services and functions in the multi-screen environment, compared to Chinese. As a device substitutes other devices, traditional boundaries of the devices are disappearing in the USA. Americans consider function to recall Apple, but Chinese consider function, design and brand to recall Apple, Sony and Samsung as an important brand at the time of their purchase. Conclusion: This study shows the potential of semantic network analysis for design research through the practical application. Semantic network analysis presents how the concepts regarding a theme are structured in the cognitive map of users with visual images and quantitative data. Therefore, it can complement the qualitative analysis of the existing design research. Application: As the design environment becomes more and more complicated like multi-screen environment, semantic network analysis, which is able to provide design insights in the intuitive and holistic perspective, will be acknowledged as an effective tool for further design research.