• 제목/요약/키워드: semantic feature

검색결과 262건 처리시간 0.024초

An Effective Framework for Contented-Based Image Retrieval with Multi-Instance Learning Techniques

  • Peng, Yu;Wei, Kun-Juan;Zhang, Da-Li
    • Journal of Ubiquitous Convergence Technology
    • /
    • 제1권1호
    • /
    • pp.18-22
    • /
    • 2007
  • Multi-Instance Learning(MIL) performs well to deal with inherently ambiguity of images in multimedia retrieval. In this paper, an effective framework for Contented-Based Image Retrieval(CBIR) with MIL techniques is proposed, the effective mechanism is based on the image segmentation employing improved Mean Shift algorithm, and processes the segmentation results utilizing mathematical morphology, where the goal is to detect the semantic concepts contained in the query. Every sub-image detected is represented as a multiple features vector which is regarded as an instance. Each image is produced to a bag comprised of a flexible number of instances. And we apply a few number of MIL algorithms in this framework to perform the retrieval. Extensive experimental results illustrate the excellent performance in comparison with the existing methods of CBIR with MIL.

  • PDF

자기 조직화 지도 모형을 이용한 인종별 얼굴 영상 군집화 기법 (Face Data Clustering Method for Face Recognition Using Self Organizing Feature Map)

  • 권혜련;고병철;변혜란;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
    • /
    • pp.577-579
    • /
    • 2003
  • 본 논문에서는 생체인식 분야 중 얼굴인식의 검색 정확성 향상 및 검색 시간을 단축하기 위한 단계로 인종별 얼굴영상 데이터베이스에 대한 군집화 기법을 연구하였다. 우선, 일반적으로 얼굴 및 이미지 검색에 사용되는 다양한 특징을 추출하고, 추출한 다차원의 특징 데이터들로부터 다 인종 얼굴 데이터를 유사한 인종별로 정확하게 군집화 하기 위해 최적의 특징벡터를 자동으로 선택 할 수 있는 방법을 제안하였다. 군집결과 분석을 위해 자기 조직화 지도 모형을 이용하였는데, 이는 2차원 분석 및 가시화에 유용하며, 학습 후 코드북벡터를 사용하여 유사한 의미간의 거리부터 검색할 수 있는 특징을 가지고 있다. 특징추출에 관한 실험결과 인종별 구분을 위한 특징벡터로는 웨이블릿 주파수 성분(lowpass 성분)과 CbCr 특징벡터가 인종별 군집화에 가장 유용한 특징으로 선택되었으며. 추출된 특징을 바탕으로 semantic map을 구성하여 제안방법의 효율성을 제시하였다.

  • PDF

A Rule-Based Analysis from Raw Korean Text to Morphologically Annotated Corpora

  • Lee, Ki-Yong;Markus Schulze
    • 한국언어정보학회지:언어와정보
    • /
    • 제6권2호
    • /
    • pp.105-128
    • /
    • 2002
  • Morphologically annotated corpora are the basis for many tasks of computational linguistics. Most current approaches use statistically driven methods of morphological analysis, that provide just POS-tags. While this is sufficient for some applications, a rule-based full morphological analysis also yielding lemmatization and segmentation is needed for many others. This work thus aims at 〔1〕 introducing a rule-based Korean morphological analyzer called Kormoran based on the principle of linearity that prohibits any combination of left-to-right or right-to-left analysis or backtracking and then at 〔2〕 showing how it on be used as a POS-tagger by adopting an ordinary technique of preprocessing and also by filtering out irrelevant morpho-syntactic information in analyzed feature structures. It is shown that, besides providing a basis for subsequent syntactic or semantic processing, full morphological analyzers like Kormoran have the greater power of resolving ambiguities than simple POS-taggers. The focus of our present analysis is on Korean text.

  • PDF

의미 프레임 자질 기반 의견 스팸 분석 (Deep Semantic Feature based Deceptive Opinion Spam Analysis)

  • 김성순;장혁윤;이성운;강재우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.1001-1004
    • /
    • 2015
  • 소설미디어의 급증과 함께 온라인 리뷰의 의존성이 급증하는 가운데 사용자의 올바른 의사결정을 저해하는 기만적 의견 스팸 이슈가 새롭게 주목받고 있다. 기존의 의견 스팸 연구는 실제 리뷰와 의견 스팸 간의 차이를 어휘, 품사 또는 감정단어와 같은 표면적 자질을 통해 설명하였으나 그들간의 의미적 연결관계는 고려하지 않았다. 본 논문에서는 1) 의미적 프레임 기반의 텍스트 분석기법을 제안하고, 이를 바탕으로 2) 의견 스팸과 실제 리뷰간의 의미적 차이가 있음을 규명하며 3) 새로운 의미적 프레임 자질을 사용하여 기존의 의견 스팸 분류 성능을 향상시킬 수 있음을 보인다.

Fully connecting the Observational Health Data Science and Informatics (OHDSI) initiative with the world of linked open data

  • Banda, Juan M.
    • Genomics & Informatics
    • /
    • 제17권2호
    • /
    • pp.13.1-13.3
    • /
    • 2019
  • The usage of controlled biomedical vocabularies is the cornerstone that enables seamless interoperability when using a common data model across multiple data sites. The Observational Health Data Science and Informatics (OHDSI) initiative combines over 100 controlled vocabularies into its own. However, the OHDSI vocabulary is limited in the sense that it combines multiple terminologies and does not provide a direct way to link them outside of their own self-contained scope. This issue makes the tasks of enriching feature sets by using external resources extremely difficult. In order to address these shortcomings, we have created a linked data version of the OHDSI vocabulary, connecting it with already established linked resources like bioportal, bio2rdf, etc. with the ultimate purpose of enabling the interoperability of resources previously foreign to the OHDSI universe.

Fake News Detection Using Deep Learning

  • Lee, Dong-Ho;Kim, Yu-Ri;Kim, Hyeong-Jun;Park, Seung-Myun;Yang, Yu-Jun
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1119-1130
    • /
    • 2019
  • With the wide spread of Social Network Services (SNS), fake news-which is a way of disguising false information as legitimate media-has become a big social issue. This paper proposes a deep learning architecture for detecting fake news that is written in Korean. Previous works proposed appropriate fake news detection models for English, but Korean has two issues that cannot apply existing models: Korean can be expressed in shorter sentences than English even with the same meaning; therefore, it is difficult to operate a deep neural network because of the feature scarcity for deep learning. Difficulty in semantic analysis due to morpheme ambiguity. We worked to resolve these issues by implementing a system using various convolutional neural network-based deep learning architectures and "Fasttext" which is a word-embedding model learned by syllable unit. After training and testing its implementation, we could achieve meaningful accuracy for classification of the body and context discrepancies, but the accuracy was low for classification of the headline and body discrepancies.

인코더-디코더 사이의 특징 융합을 통한 멀티 모달 네트워크의 의미론적 분할 성능 향상 (Improved Semantic Segmentation in Multi-modal Network Using Encoder-Decoder Feature Fusion)

  • 손찬영;호요성
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 추계학술대회
    • /
    • pp.81-83
    • /
    • 2018
  • Fully Convolutional Network(FCN)은 기존의 방법보다 뛰어난 성능을 보였지만, FCN은 RGB 정보만을 사용하기 때문에 세밀한 예측이 필요한 장면에서는 다소 부족한 성능을 보였다. 이를 해결하기 위해 인코더-디코더 구조를 이용하여 RGB와 깊이의 멀티 모달을 활용하기 위한 FuseNet이 제안되었다. 하지만, FuseNet에서는 RGB와 깊이 브랜치 사이의 융합은 있지만, 인코더와 디코더 사이의 특징 지도를 융합하지 않는다. 본 논문에서는 FCN의 디코더 부분의 업샘플링 과정에서 이전 계층의 결과와 2배 업샘플링한 결과를 융합하는 스킵 레이어를 적용하여 FuseNet의 모달리티를 잘 활용하여 성능을 개선했다. 본 실험에서는 NYUDv2와 SUNRGBD 데이터 셋을 사용했으며, 전체 정확도는 각각 77%, 65%이고, 평균 IoU는 47.4%, 26.9%, 평균 정확도는 67.7%, 41%의 성능을 보였다.

  • PDF

A Novel Cross Channel Self-Attention based Approach for Facial Attribute Editing

  • Xu, Meng;Jin, Rize;Lu, Liangfu;Chung, Tae-Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2115-2127
    • /
    • 2021
  • Although significant progress has been made in synthesizing visually realistic face images by Generative Adversarial Networks (GANs), there still lacks effective approaches to provide fine-grained control over the generation process for semantic facial attribute editing. In this work, we propose a novel cross channel self-attention based generative adversarial network (CCA-GAN), which weights the importance of multiple channels of features and archives pixel-level feature alignment and conversion, to reduce the impact on irrelevant attributes while editing the target attributes. Evaluation results show that CCA-GAN outperforms state-of-the-art models on the CelebA dataset, reducing Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) by 15~28% and 25~100%, respectively. Furthermore, visualization of generated samples confirms the effect of disentanglement of the proposed model.

Metadata Processing Technique for Similar Image Search of Mobile Platform

  • Seo, Jung-Hee
    • Journal of information and communication convergence engineering
    • /
    • 제19권1호
    • /
    • pp.36-41
    • /
    • 2021
  • Text-based image retrieval is not only cumbersome as it requires the manual input of keywords by the user, but is also limited in the semantic approach of keywords. However, content-based image retrieval enables visual processing by a computer to solve the problems of text retrieval more fundamentally. Vision applications such as extraction and mapping of image characteristics, require the processing of a large amount of data in a mobile environment, rendering efficient power consumption difficult. Hence, an effective image retrieval method on mobile platforms is proposed herein. To provide the visual meaning of keywords to be inserted into images, the efficiency of image retrieval is improved by extracting keywords of exchangeable image file format metadata from images retrieved through a content-based similar image retrieval method and then adding automatic keywords to images captured on mobile devices. Additionally, users can manually add or modify keywords to the image metadata.

A Survey on Image Emotion Recognition

  • Zhao, Guangzhe;Yang, Hanting;Tu, Bing;Zhang, Lei
    • Journal of Information Processing Systems
    • /
    • 제17권6호
    • /
    • pp.1138-1156
    • /
    • 2021
  • Emotional semantics are the highest level of semantics that can be extracted from an image. Constructing a system that can automatically recognize the emotional semantics from images will be significant for marketing, smart healthcare, and deep human-computer interaction. To understand the direction of image emotion recognition as well as the general research methods, we summarize the current development trends and shed light on potential future research. The primary contributions of this paper are as follows. We investigate the color, texture, shape and contour features used for emotional semantics extraction. We establish two models that map images into emotional space and introduce in detail the various processes in the image emotional semantic recognition framework. We also discuss important datasets and useful applications in the field such as garment image and image retrieval. We conclude with a brief discussion about future research trends.