• Title/Summary/Keyword: self-recognition algorithm

Search Result 116, Processing Time 0.028 seconds

A Multi-Scale Parallel Convolutional Neural Network Based Intelligent Human Identification Using Face Information

  • Li, Chen;Liang, Mengti;Song, Wei;Xiao, Ke
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1494-1507
    • /
    • 2018
  • Intelligent human identification using face information has been the research hotspot ranging from Internet of Things (IoT) application, intelligent self-service bank, intelligent surveillance to public safety and intelligent access control. Since 2D face images are usually captured from a long distance in an unconstrained environment, to fully exploit this advantage and make human recognition appropriate for wider intelligent applications with higher security and convenience, the key difficulties here include gray scale change caused by illumination variance, occlusion caused by glasses, hair or scarf, self-occlusion and deformation caused by pose or expression variation. To conquer these, many solutions have been proposed. However, most of them only improve recognition performance under one influence factor, which still cannot meet the real face recognition scenario. In this paper we propose a multi-scale parallel convolutional neural network architecture to extract deep robust facial features with high discriminative ability. Abundant experiments are conducted on CMU-PIE, extended FERET and AR database. And the experiment results show that the proposed algorithm exhibits excellent discriminative ability compared with other existing algorithms.

Intelligent interface using hand gestures recognition based on artificial intelligence (인공지능 기반 손 체스처 인식 정보를 활용한 지능형 인터페이스)

  • Hangjun Cho;Junwoo Yoo;Eun Soo Kim;Young Jae Lee
    • Journal of Platform Technology
    • /
    • v.11 no.1
    • /
    • pp.38-51
    • /
    • 2023
  • We propose an intelligent interface algorithm using hand gesture recognition information based on artificial intelligence. This method is functionally an interface that recognizes various motions quickly and intelligently by using MediaPipe and artificial intelligence techniques such as KNN, LSTM, and CNN to track and recognize user hand gestures. To evaluate the performance of the proposed algorithm, it is applied to a self-made 2D top-view racing game and robot control. As a result of applying the algorithm, it was possible to control various movements of the virtual object in the game in detail and robustly. And the result of applying the algorithm to the robot control in the real world, it was possible to control movement, stop, left turn, and right turn. In addition, by controlling the main character of the game and the robot in the real world at the same time, the optimized motion was implemented as an intelligent interface for controlling the coexistence space of virtual and real world. The proposed algorithm enables sophisticated control according to natural and intuitive characteristics using the body and fine movement recognition of fingers, and has the advantage of being skilled in a short period of time, so it can be used as basic data for developing intelligent user interfaces.

  • PDF

Divided SOFM training and feature extraction using template matching classifier (템플레이트 매칭 분류를 이용한 SOFM의 분할 학습과 특징 추출)

  • 서석배;하성욱;강대성
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.705-708
    • /
    • 1998
  • In this paper, a new algorithm is proposed that the template matching is used to devide SOFM (self-organizig feature map) for fast learning and to extract features for considering input data types. In order to verify the superoprity of the proposed algorithm, applied to the recognition of handwritten numerals. Templates of handwritten numerals are created by a line of external-contact.

  • PDF

Small Marker Detection with Attention Model in Robotic Applications (로봇시스템에서 작은 마커 인식을 하기 위한 사물 감지 어텐션 모델)

  • Kim, Minjae;Moon, Hyungpil
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.425-430
    • /
    • 2022
  • As robots are considered one of the mainstream digital transformations, robots with machine vision becomes a main area of study providing the ability to check what robots watch and make decisions based on it. However, it is difficult to find a small object in the image mainly due to the flaw of the most of visual recognition networks. Because visual recognition networks are mostly convolution neural network which usually consider local features. So, we make a model considering not only local feature, but also global feature. In this paper, we propose a detection method of a small marker on the object using deep learning and an algorithm that considers global features by combining Transformer's self-attention technique with a convolutional neural network. We suggest a self-attention model with new definition of Query, Key and Value for model to learn global feature and simplified equation by getting rid of position vector and classification token which cause the model to be heavy and slow. Finally, we show that our model achieves higher mAP than state of the art model YOLOr.

Real-Time Travelling Control of Mobile Robot by Conversation Function Based on Voice Command (대화기능에 의한 모바일로봇의 실시간 주행제어)

  • Shim, Byoung-Kyun;Lee, Woo-Song;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.4
    • /
    • pp.127-132
    • /
    • 2013
  • We describe a research about remote control of mobile robot based on voice command in this paper. Through real-time remote control and wireless network capabilities of an unmanned remote-control experiments and Home Security / exercise with an unmanned robot, remote control and voice recognition and voice transmission are possible to transmit on a PC using a microphone to control a robot to pinpoint of the source. Speech recognition can be controlled robot by using a remote control. In this research, speech recognition speed and direction of self-driving robot were controlled by a wireless remote control in order to verify the performance of mobile robot with two drives.

Wireless Communication Real-Time Travelling Control of Mobile Robot by Voice Command (음성명령에 의한 모바일로봇의 무선통신 실시간 주행제어)

  • Shim, Byoung-Kyun;Han, Sung-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.33-38
    • /
    • 2011
  • We describe a research about remote control of mobile robot based on voice command in this paper. Through real-time remote control and wireless network capabilities of an unmanned remote-control experiments and Home Security / exercise with an unmanned robot, remote control and voice recognition and voice transmission are possible to transmit on a PC using a microphone to control a robot to pinpoint of the source. Speech recognition can be controlled robot by using a remote control. In this research, speech recognition speed and direction of self-driving robot were controlled by a wireless remote control in order to verify the performance of mobile robot with two drives.

Intelligent Pattern Recognition Algorithms based on Dust, Vision and Activity Sensors for User Unusual Event Detection

  • Song, Jung-Eun;Jung, Ju-Ho;Ahn, Jun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.8
    • /
    • pp.95-103
    • /
    • 2019
  • According to the Statistics Korea in 2017, the 10 leading causes of death contain a cardiac disorder disease, self-injury. In terms of these diseases, urgent assistance is highly required when people do not move for certain period of time. We propose an unusual event detection algorithm to identify abnormal user behaviors using dust, vision and activity sensors in their houses. Vision sensors can detect personalized activity behaviors within the CCTV range in the house in their lives. The pattern algorithm using the dust sensors classifies user movements or dust-generated daily behaviors in indoor areas. The accelerometer sensor in the smartphone is suitable to identify activity behaviors of the mobile users. We evaluated the proposed pattern algorithms and the fusion method in the scenarios.

Hand Shape Detection and Recognition using Self Organized Feature Map(SOMF) and Principal Component Analysis (자기 조직화 특징 지도(SOFM)와 주성분 분석을 이용한 손 형상 검출 및 인식)

  • Kim, Kyoung-Ho;Lee, Kee-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.11
    • /
    • pp.28-36
    • /
    • 2013
  • This study proposed a robust detection algorithm. It detects hands more stably with respect to changes in light and rotation for the identification of a hand shape. Also it satisfies both efficiency of calculation and the function of detection. The algorithm proposed segmented the hand area through pre-processing using a hand shape as input information in an environment with a single camera and then identified the shape using a Self Organized Feature Map(SOFM). However, as it is not easy to exactly recognize a hand area which is sensitive to light, it has a large degree of freedom, and there is a large error bound, to enhance the identification rate, rotation information on the hand shape was made into a database and then a principal component analysis was conducted. Also, as there were fewer calculations due to the fewer dimensions, the time for real-time identification could be decreased.

The Suggestion of LINF Algorithm for a Real-time Face Recognition System (실시간 얼굴인식 시스템을 위한 새로운 LINF 알고리즘의 제안)

  • Jang Hye-Kyoung;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.79-86
    • /
    • 2005
  • In this paper, we propose a new LINF(Linear Independent Non-negative Factorization) algorithm for real-time face recognition systea This system greatly consists of the two parts: 1) face extraction part; 2) face recognition part. In the face extraction Part we applied subtraction image, the detection of eye and mouth region , and normalization method, and then in the face recognition Part we used LINF in extracted face candidate region images. The existing recognition system using only PCA(Principal Component Analysis) showed low recognition rates, and it was hard in the recognition system using only LDA(Linear Discriminants Analysis) to apply LDA directly when the training set is small. To overcome these shortcomings, we reduced dimension as the matrix that had non-negative value to be different from former eigenfaces and then applied LDA to the matrix in the proposed system We have experimented using self-organized DAIJFace database and ORL database offered by AT(')T laboratory in Cambridge, U.K. to evaluate the performance of the proposed system. The experimental results showed that the proposed method outperformed PCA, LDA, ICA(Independent Component Analysis) and PLMA(PCA-based LDA mixture algorithm) method within the framework of recognition accuracy.

Optimization of Structure-Adaptive Self-Organizing Map Using Genetic Algorithm (유전자 알고리즘을 사용한 구조적응 자기구성 지도의 최적화)

  • 김현돈;조성배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.223-230
    • /
    • 2001
  • Since self-organizing map (SOM) preserves the topology of ordering in input spaces and trains itself by unsupervised algorithm, it is Llsed in many areas. However, SOM has a shortcoming: structure cannot be easily detcrmined without many trials-and-errors. Structure-adaptive self-orgnizing map (SASOM) which can adapt its structure as well as its weights overcome the shortcoming of self-organizing map: SASOM makes use of structure adaptation capability to place the nodes of prototype vectors into the pattern space accurately so as to make the decision boundmies as close to the class boundaries as possible. In this scheme, the initialization of weights of newly adapted nodes is important. This paper proposes a method which optimizes SASOM with genetic algorithm (GA) to determines the weight vector of newly split node. The leanling algorithm is a hybrid of unsupervised learning method and supervised learning method using LVQ algorithm. This proposed method not only shows higher performance than SASOM in terms of recognition rate and variation, but also preserves the topological order of input patterns well. Experiments with 2D pattern space data and handwritten digit database show that the proposed method is promising.

  • PDF