• Title/Summary/Keyword: self-oscillating mixer

Search Result 18, Processing Time 0.027 seconds

Single-balanced Direct Conversion Quadrature Receiver with Self-oscillating LMV

  • Nam-Jin Oh
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.122-128
    • /
    • 2023
  • This paper proposes two kinds of single-balanced direct conversion quadrature receivers using selfoscillating LMVs in which the voltage-controlled oscillator (VCO) itself operates as a mixer while generating an oscillation. The two LMVs are complementary coupled and series coupled to generate the quadrature oscillating signals, respectively. Using a 65 nm CMOS technology, the proposed quadrature receivers are designed and simulated. Oscillating at around 2.4 GHz frequency, the complementary coupled quadrature receiver achieves the phase noise of -28 dBc/Hz at 1KHz offset and -109 dBc/Hz at 1 MHz offset frequency. The other series coupled receiver achieves the phase noise of -31 dBc/Hz at 1KHz offset and -109 dBc/Hz at 1 MHz offset frequency. The simulated voltage conversion gain of the two single-balanced receivers is 37 dB and 45 dB, respectively. The double-sideband noise figure of the two receivers is 5.3 dB at 1 MHz offset. The quadrature receivers consume about 440 μW dc power from a 1.0-V supply.

Design of A Self Oscillating and Mixing Frequency Down-Converter Using A DGS (DGS 구조를 이용한 자기발진혼합형 주파수 하향변환기 설계)

  • 정명섭;박준석;김형석;임재봉
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.11
    • /
    • pp.536-543
    • /
    • 2003
  • In this paper, we describe a unique self oscillating and mixing (SOM) down-converter design using a modified defected ground structure (DGS). The proposed SOM converter is consisted of self-oscillator, which can produce negative resistance and select resonance frequency, RF matching circuit, and IF low pass filter. As the advantage of this SOM converter can mix LO and RF signals as well as inducing LO signal with only one active device. it is designed as a simple structure and the low cost. Also, there is easy advantage to be applied in RFIC/MMIC technology because it offers excellent phase noise performance in spite of using micro-strip structure. The LO signal for the proposed SOM converter is designed at 1㎓ and RF frequency was chosen to be 800MHz. The achieved conversion loss and phase noise performances of the implemented SOM converter are 15㏈ and -95dBc/Hz at 100KHz offset frequency respectively. The equivalent circuit parameters for DGS are extracted by using a three dimensional EM simulator and simple circuit analysis method.

Design of X-Band SOM for Doppler Radar (도플러 레이더를 위한 X-Band SOM 설계)

  • Jeong, Sun-Hwa;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1167-1172
    • /
    • 2013
  • This paper presents a X-band doppler radar with high conversion gain using a self-oscillating-mixer(SOM) that oscillation and frequency mixing is realized at the same time. To improve phase noise of the SOM oscillator, a ${\lambda}/2$ slotted square patch resonator(SSPR) was proposed, which shows high Q-factor of 175.4 and the 50 % reduced circuit area compared to the conventional resonator. To implement the low power system, low biasing voltage of 1.7 V was supplied. To enhance the conversion gain of the SOM, bias circuit is configured near the pinch-off region of transistor, and the conversion gain was optimized. The output power of the proposed SOM was -3.16 dBm at 10.65 GHz. A high conversion gain of 9.48 dB was obtained whereas DC Power consumption is relatively low about 7.65 mW. The phase noise is -90.91 dBc/Hz at 100 kHz offset. The figure-of-merit(FOM) of the proposed SOM was measured as -181.8 dBc/Hz, which is supplier to other SOMs by more than about 7 dB.

A Highly Linear Self Oscillating Mixer Using Second Harmonic Injection (2차 고조파 주입을 사용한 고 선형성의 자체 발진 혼합기)

  • Kim, Min-Hoe;Cho, Choon-Sik;Lee, Jae-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.682-690
    • /
    • 2012
  • In this paper, a highly linear self oscillating mixers(SOM) using second harmonic injections are presented. The H-slot defected ground structure(DGS) is designed as a balanced resonator for oscillation in the proposed SOM. Since the H-slot DGS resonator achieves a high Q factor, it is a suitable structure to provide low phase noise for the oscillator. The single balanced mixer is utilized in this work and it provides good LO-RF isolation since balanced LO signals are suppressed at the RF input port. In order to inject the second harmonic of the IF, we propose two different methods using feedback loops. In the first method, IF achieves a 3.08 dB conversion gain at 226 MHz with input power of -20 dBm at 5 GHz RF input signal. The IF achieves 2 dB conversion gain at 423 MHz with the input power of -20 dBm at 5.2 GHz RF input signal in the second method. The measured IMD3s are 61.8 dB and 65 dB for the each method. These SOMs present improved linearity compared to that without the second harmonic injection because IMD3s are improved by 18. dB and 21 dB for each method.

Tunnel Diode Oscillator with a Moving Target as a Self-excited Mixer (이동물체 탐색을 위한 터넬다이오드 백여믹서)

  • Lee, Jong-Gak;Sim, Su-Bo;Yun, Hyeon-Bo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.11 no.1
    • /
    • pp.40-46
    • /
    • 1974
  • This paper deals with the self-excited mixer using tunnel diode oscillator operated as a microwave source and Doppler signal detector. The system impedance, the oscillation condition and the frequency conversion theory including moving target are investigated. The oscillating frequency and the output of tunnel diode oscillator are 2.035 GHz and 0.1 mW. The input signal frequency which is equivalent to Doppler signal is lower than tunnel diode oscillator frequency by 125 MHz. TDe conversion loss has been investigated as a functicn of input signal level. This loss is greater than 67 db for the large pump mode.

  • PDF

Implementation of Down Converter for Ku-Band Application (Ku 대역용 주파수변환기의 구현)

  • 정동근;김상태;하천수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.527-536
    • /
    • 2000
  • This paper discusses the design of self-oscillating mixer type low noise down converter using the microwave field effect transistor. The mixer is consists of local oscillator in which high stability dielectric resonator and band pass filter to get rid of spurious oscillation at intermediate frequency stage. The microstrip antenna was integrated in the same substrate which generate 12.3GHz and low noise amplifier was also added after antenna using 3 stage of high electron mobility transistors. The output frequency from the local oscillator was chosen as 11.3GHz for the Ku-band application. The measured phase noise was -804dBc/Hz at 100kHz offset frequency, and the gain was 7~12dB in frequency range from 12.0GHz to 12.7GHz. The noise figure at intermediate frequency stage was 64H. The designed model shows less conversion loss than previous diode type mixer. The proposed mixer can be used in digital satellite broadcasting and communication system and expected to use in next generation low noise block design.

  • PDF

Analysis of optimum condition for conversion gain of cascode coupled microwave Self-Oscillating-Mixer (Cascode 결합 마이크로파 자기발진 믹서의 최적변환이득을 위한 바이어스 조건 분석)

  • 이성주;신동환;이영철
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.93-96
    • /
    • 2003
  • 본 논문은 캐스코드 구조에서의 바이어스 조건에 대해 분석하고 이를 이용하여 C-Band용 마이크로파 수신기에서의 자기발진믹서를 분석하였다. 자기발진믹서는 두 개의 FET에 의해서 동작되며 상위 FET는 비교적 높은 Q값을 가지는 유전체공진기에 의해서 발진기로 동작하도록 하였으며, 아래쪽 FET는 믹서로 동작시켰다. 모의실험 결과에 의해 초기 드레인 전압은 $V_{ds}$ =2.5V이고 게이트바이어스 전압은 $V_{gs1}$=-0.2V와 $V_{g2}$=0V로 선정하였다. 선정된 바이어스를 통해 설계된 5.15GHz의 발진기 출력은 5.92dBm, 위상잡음은 -132.0dBc/100KHz, 믹서의 변환손실은 약 -3dB를 얻었다.얻었다.

  • PDF