• 제목/요약/키워드: self-organizing maps (SOM)

검색결과 57건 처리시간 0.025초

자기조직화 지도를 위한 베이지안 학습 (Bayesian Learning for Self Organizing Maps)

  • 전성해;전홍석;황진수
    • 응용통계연구
    • /
    • 제15권2호
    • /
    • pp.251-267
    • /
    • 2002
  • Kohonen이 제안한 자기조직화 지도(Self Organizing Maps : SOM)는 매우 빠른 신경망 모형이다. 하지만 다른 신경망 모형과 마찬가지로 학습 결과에 대한 명확한 규칙을 제시하지 못할 뿐만 아니라 지역적 최적값으로 빠지는 경우가 종종 있다. 본 논문에서는 이러한 자기조직화 지도의 모형에 대한 설명력을 부여하고 전역 최적값으로 수렴할 수 있는 예측 성능을 갖는 모형으로서 자율학습 신경망에 베이지안 추론을 결합한 자기조직화 지도를 위한 베이지안 학습(Bayesian Learning for Self Organizing Maps ; BLSOM)을 제안한다. 이 방법은 기존의 자기조직화 지도가 지역적 해에 머물러 있는 것에 비해서 언제든지 전역적 해로 수렴함이 실험을 통하여 밝혀졌다.

Improvement of Self Organizing Maps using Gap Statistic and Probability Distribution

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권2호
    • /
    • pp.116-120
    • /
    • 2008
  • Clustering is a method for unsupervised learning. General clustering tools have been depended on statistical methods and machine learning algorithms. One of the popular clustering algorithms based on machine learning is the self organizing map(SOM). SOM is a neural networks model for clustering. SOM and extended SOM have been used in diverse classification and clustering fields such as data mining. But, SOM has had a problem determining optimal number of clusters. In this paper, we propose an improvement of SOM using gap statistic and probability distribution. The gap statistic was introduced to estimate the number of clusters in a dataset. We use gap statistic for settling the problem of SOM. Also, in our research, weights of feature nodes are updated by probability distribution. After complete updating according to prior and posterior distributions, the weights of SOM have probability distributions for optima clustering. To verify improved performance of our work, we make experiments compared with other learning algorithms using simulation data sets.

자기조직화 지도를 이용한 한국 기업의 재무성과 평가 (Financial Performance Evaluation using Self-Organizing Maps: The Case of Korean Listed Companies)

  • 민재형;이영찬
    • 한국경영과학회지
    • /
    • 제26권3호
    • /
    • pp.1-20
    • /
    • 2001
  • The amount of financial information in sophisticated large data bases is huge and makes interfirm performance comparisons very difficult or at least very time consuming. The purpose of this paper is to investigate whether neural networks in the form of self-organizing maps (SOM) can be successfully employed to manage the complexity for competitive financial benchmarking. SOM is known to be very effective to visualize results by projecting multi-dimensional financial data into two-dimensional output space. Using the SOM, we overcome the problems of finding an appropriate underlying distribution and the functional form of data when structuring and analyzing a large data base, and show an efficient procedure of competitive financial benchmarking through clustering firms on two-dimensional visual space according to their respective financial competitiveness. For the empirical purpose, we analyze the data base of annual reports of 100 Korean listed companies over the years 1998, 1999, and 2000.

  • PDF

고객관계관리의 시장 세분화를 위한 Self-Organizing Maps 재고찰 (Rethinking of Self-Organizing Maps for Market Segmentation in Customer Relationship Management)

  • 방정혜
    • 지능정보연구
    • /
    • 제13권4호
    • /
    • pp.17-34
    • /
    • 2007
  • 본 논문은 고객관계관리를 위한 시장 세분화를 하기 위해 자주 사용되는 SOM에 대하여 고찰한다. 일반적으로, SOM은 군집의 수를 미리 파악하기 위하여, 구체적인 군집 분석이 이루어지기 이전에 사용된다. 그러나 인터넷이 발달하고 수집 가능한 데이터의 종류와 양이 증가함에 따라 복합적인 분석이 필요하게 되었다. 또한, 그에 따라 한가지 주제만으로 군집을 파악하는 것보다는 여러 가지의 주제들을 대상으로 고객데이터의 군집을 파악해야 하는 경우가 많이 발생하게 된 것이다. 따라서 이 논문에서는 이렇게 한가지의 주제가 아닌 여러 가지의 주제로 군집분석을 할 경우 한번으로 이루어지는 SOM 어프로치가 과연 군집의 수를 파악할 수 있는지를 실험하였다. 이미 구조를 알고 있는 데이터를 생성하여 실험을 해본 결과, 전체 데이터를 대상으로 여러 주제를 한꺼번에 포함시킨 경우 (single SOM 방식) 에는 그 구조를 제대로 파악하지 못하였으며, 하나의 주제마다 각기 다른 SOM을 사용(multiple SOM 방식)한 결과, 미리 정해졌던 구조를 제대로 파악할 수 있었다. 따라서 이 논문은 군집분석을 하게 될 경우, 좀더 조심스러운 접근법이 필요하며, 여러가지 주제를 포함하고 있는 데이타를 다룰 경우, SOM 분석 방법에 대하여 논의하였다.

  • PDF

Self-Organizing Map을 이용한 한국어 동사 클러스터링 (Korean Verb Clustering Using Self-Organizing Maps)

  • 박성배;장병탁;김영택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.183-184
    • /
    • 1998
  • 본 논문에서는 목적어-동사 관계의 분포에 따라 한국어 동사를 자동적으로 클러스터링하는 방법을 제시한다. SOM(Self-Organizing Map)이 입력 패턴을 분석하고 가시화하는데 뛰어난 성능을 보이므로, 본 논문에서는 클러스터링하는 방법으로 SOM을 채택하였다. 일단 맵(map)이 만들어지고 나면 학습하는 동안 경험하지 못한 동사도 쉽게 적당한 클러스터로 분류될 수 있고 클러스터들 간의 의미 거리도 맵을 이용하여 쉽게 계산할 수 있다. 본 논문에서 제안한 방법을 명사 확률 분포의 상대 엔트로피(relative entropy)에 기반한 클러스터링 방법과 비교해 본 결과, SOM에 의해 만들어진 동사 클러스터가 상대 엔트로피를 이용해서 만들어진 클러스터를 잘 반영한다는 것을 알 수 있었다.

  • PDF

Semantic Correspondence of Database Schema from Heterogeneous Databases using Self-Organizing Map

  • Dumlao, Menchita F.;Oh, Byung-Joo
    • 전기전자학회논문지
    • /
    • 제12권4호
    • /
    • pp.217-224
    • /
    • 2008
  • This paper provides a framework for semantic correspondence of heterogeneous databases using self- organizing map. It solves the problem of overlapping between different databases due to their different schemas. Clustering technique using self-organizing maps (SOM) is tested and evaluated to assess its performance when using different kinds of data. Preprocessing of database is performed prior to clustering using edit distance algorithm, principal component analysis (PCA), and normalization function to identify the features necessary for clustering.

  • PDF

Hybrid Self Organizing Map using Monte Carlo Computing

  • 전성해;박민재;오경환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.381-384
    • /
    • 2006
  • Self Organizing Map(SOM) is a powerful neural network model for unsupervised loaming. In many clustering works with exploratory data analysis, it has been popularly used. But it has a weakness which is the poorly theoretical base. A lot more researches for settling the problem have been published. Also, our paper proposes a method to overcome the drawback of SOM. As compared with the presented researches, our method has a different approach to solve the problem. So, a hybrid SOM is proposed in this paper. Using Monte Carlo computing, a hybrid SOM improves the performance of clustering. We verify the improved performance of a hybrid SOM according to the experimental results using UCI machine loaming repository. In addition to, the number of clusters is determined by our hybrid SOM.

  • PDF

하이브리드 SOM을 이용한 동적 웹 정보 추천 기법 (Dynamic Web Recommendation Method Using Hybrid SOM)

  • 윤경배;박창희
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.471-476
    • /
    • 2004
  • 최근, 사용자에게 가장 필요한 정보를 제공하기 위한 웹 정보 추천 시스템에 대한 연구가 인터넷 쇼핑몰등을 대상으로 활발히 진행되고 있다. 그 중 SOM(Self-Organizing Feature Maps)을 이용한 동적 웹 정보 추천 기법은 빠른 수행 속도와 간편하게 사용할 수 있는 장점이 존재하나, 모형에 대한 설명력 부족 및 최종적으로 구축된 모형에서 출력층의 각 노드가 한 개의 가중치 값들로 고정되는 단점이 존재한다. 본 논문에서는 이러한 단점인 모형에 대한 설명력 부족을 베이지안 추론 기법으로 해결하며, 하이브리드 SOM을 이용하여 최종적으로 구축된 모형에서 출력층의 각 노드가 한 개의 가중치 값들로 고정되는 것이 아니라 가중치가 속하게 되는 분포가 결정되도록 한다. 이러한 하이브리드 SOM을 이용하여 동적 웹 정보 추천 기법을 설계하고 구현하여 기존의 웹 정보 추천 기법과 성능 비교를 수행한 결과, 제안된 기법의 우수함이 입증되었다.

Validity Study of Kohonen Self-Organizing Maps

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • 제10권2호
    • /
    • pp.507-517
    • /
    • 2003
  • Self-organizing map (SOM) has been developed mainly by T. Kohonen and his colleagues as a unsupervised learning neural network. Because of its topological ordering property, SOM is known to be very useful in pattern recognition and text information retrieval areas. Recently, data miners use Kohonen´s mapping method frequently in exploratory analyses of large data sets. One problem facing SOM builder is that there exists no sensible criterion for evaluating goodness-of-fit of the map at hand. In this short communication, we propose valid evaluation procedures for the Kohonen SOM of any size. The methods can be used in selecting the best map among several candidates.

주성분 자기조직화 지도 PC-SOM (Principal Components Self-Organizing Map PC-SOM)

  • 허명회
    • 응용통계연구
    • /
    • 제16권2호
    • /
    • pp.321-333
    • /
    • 2003
  • 자기조직화 지도(SOM)은 T. 코호넨의 주도하에 개발된 비지도 학습 신경망 모형이다. 그 동안 패턴인식과 문서검색 분야에 주로 응용되어 왔기 때문에 통계학 분야에서는 덜 알려졌으나, 최근 K-평균 군집화에 대한 대안적 데이터 마이닝 기법으로 활용되기 시작하였다. 본 연구에서는 SOM의 한 버전인 PC-SOM(주성분 자기조직화 지도)을 제안하고 활용 예를 제시하고자 한다. PC-SOM은 1차원적 SOM 알고리즘을 반복 수행하여 2차원, 3차원 등의 SOM을 얻는 방법이기 때문에 기존 SOM과는 달리 사전 Map의 크기를 확정할 필요가 없다. 또한, 기존 SOM에 비하여 향상된 시각화를 가능하게 한다.