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Abstract

Self-organizing map (SOM) has been developed mainly by T. Kohonen and his
colleagues as a unsupervised learning neural network. Because of its topological
ordering property, SOM is known to be very useful in pattern recognition and text
information retrieval areas. Recently, data miners use Kohonen's mapping method
frequently in exploratory analyses of large data sets.

One problem facing SOM builder is that there exists no sensible criterion for
evaluating goodness-of-fit of the map at hand. In this short communication, we
propose valid evaluation procedures for the Kohonen SOM of any size. The methods
can be used in selecting the best map among several candidates.
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1. Background and Aim

Self-organizing map (SOM) is a unsupervised learning neural network method developed by
Teuvo Kohonen of Finland and his colleagues since 1980’s (Kohonen, 1995). SOM is known to
be very useful In pattern recognition and text information retrieval areas, as demonstrated by
numerous studies (http://www.cis.hut.fi/research/som-bibl/, http://www.soe.ucsc.edu/NCS). The
main virtue of SOM is the topological ordering property, which enables visualization and
abstraction of data sets at the same time (Kohonen, 1998).

SOM has been neglected in statistical community, because of its engineering orientation.
Only a few years ago, applied statisticians began to use Kohonen’s mapping method in
exploratory analyses of large data sets or data mining. Readable writings are available now in
several statistical text books such as Ripley (1996) and Hastie, Tibshirani and Friedman
(2001). In Korean statistical circle, Jun, Jorn and Hwang (2002) seems to be the first article
on SOM. Recently, the author finished writing an article on the topic (Huh, 2003).
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We will briefly sketch SOM algorithm to introduce the terms and notations adopted in this
article. Suppose that the input data set consists of z units of p-dimensional measurements
%y, **, %,. The aim of SOM is to arrange m (< n) neurons that respond to input units in a
self-organized manner. The following algorithm is for typical SOM built on two-dimensicnal
grid of rectangular shape.

0) m(=c, c;) neurons are allocated to one of the nodes on ¢, X ¢; grid. Inside of nodes,
-dimensional latent vectors called the node weights wy,, -, w.. reside. Initially, node
weight vectors are set randomly or spaced systematically on major principal components
(Kohonen, 1998). Set the time #=1. Node weights are becoming refined as time passes.

1) Once the input unit x; arrives at the map or the net (i=1,-,n), find the node that has
the closest weight vector. Denote the hit or winner node by j(i) and its weight by w;q).
That is,

lx; —wpl< lx;—w;l, foral j = (1,1),-,(cy, ca).
Here, | - | is Euclidean distance. Because of this, the input data set is normally
standardized before being processed by the algorithm.

2) The node weights are updated as follows:

wi<— w; +a;h(j, (@) (x; —w;), forall j such that | r;—7r;,l<d,
where 7; is coordinate point of grid node j, «, is learning rate that decreases from
starting value @, to ending value @; as ¢ increases. 4 ,j,;’) is local weighting constant

that decreases as ¢ or || » j—# ;| increases. For convenience, assume

RiG,i’) = exp{—lr;j—r; 1%@d)},

where o2 is a decreasing function of ¢. Finally, node neighborhood radius d, is a

!

decreasing step function of ¢. Each step value of d; defines the phase containing a fixed

number of cycles.

3) As one input unit is processed in Step 1 and Step 2, increase ¢ by one, and get the next
unit ready. As the last unit is processed, start either new cycle or phase with the first
unit. In all cases, return to Step 1 unless the following conditions are met: i) The changes
in node weights become negligible or ii) the time ¢ reaches pre- determined limit. Finaly,
output the list of hit nodes for each unit and the array of weight vectors for all grid
nodes.

When one draws several SOM's with a given data set, he/she naturally want to compare
the maps. For instance, which is a better map between 12x4 SOM and 7x7 SOM? [These two
have nearly same number of nodes.] The aim of this short communication is to develop a
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valid method for measuring goodness-of-fit's.

In Section 2 and Section 3, data set partitioning and re-sampling procedures are proposed
for valid evaluation of the lack-of-fit of given SOM with numerical examples. Concluding
remarks follow in Section 4.

2. Validity Evaluation from Partitioned Data Sets

Suppose we have the SOM portraying # input units x,,--,x, on the ¢ X¢; grid of

nodes. If one considers

Gy = Lz;"xi—w;‘(allz

n

as a "lack-of-fit” measure of the map, then he/she will certainly suffer from under-
evaluation since the node weights are derived from input units. Hence it is necessary to
separate the input units from the node weights of the map statistically to get a valid measure
of lack-of-fit. For this purpose, we propose following data set partitioning procedure.

Step 0. Split the # (=#x; + n,) input units randomly into two non-overlapping subsets, called

Half-sample 1 and Half-sample 2, of nearly equal sizes »; and %, respectively. Write

Half-sample 1: x(ll), x(,,l? and Half-sample 2: x(12), x(,,zz

Step 1-1. Construct a ¢, X ¢; map with Half-sample 1 units. As result, one obtains the flow

connections from the unit 7, to the hitting node 7, (7)), 71 =1,--,%;. Also, node weights

w$, -+, w?, become available.

Step 1-2. Parallel works are done with Half-sample 2 units. Denote the hit node of unit i, as

j2(iy) and write w'®, -, w(fl)cz for node weights produced.

Step 2. Compute

n
G = o A el
as the lack-of-fit of Half-sample 1 units. Similarly, compute
»
6 = oy Z e il

as the lack-of-fit of Half~sample 2 units.

It is quite clear that node weights w%, w(f,)cZ of Half-sample 2 SOM are statistically

independent of Half-sample 1 input units xV, -, x(,,lf Hence, Gi" is an honest estimate of

(2)
2

the "lack-of-fit”. By symmetry, G, provides another estimate of the same thing.
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The above method is in agreement with a general cluster validation procedure, in which the
data set is randomly divided into two subsets and one evaluates the difference between
analysis results of subsets. Refer to Gordon (1999).

Iris Data Example

Fisher’s iris data set consists of 150 units of 4-dimensional measurements (sepal length,
sepal width, petal length, petal width). These four variables are standardized before be.ng
processed. Also, observation (input) units are classified into one of three species (1: setosa, 2:
versicolor, 3: verginica), but species codes will not be used in the construction of SOM's.

Imposing 12x4 grid over all units, we obtained the apparent lack-of-fit G, = 0.130. [In
constructing this SOM, we used following specifications: Initial learning rate = 0.25, terminal
learning rate = 0.001, starting radius of node neighborhood = 3, ending radius of node
neighborhood = 1, number of cycles per phase = 50. The author wrote a SOM program in
SAS/IML.]

To evaluate the lack-of-fit not in a overlapping way, the input data was split into two
equal halves of 75 units each, Half-sample 1 and Half-sample 2. It turned out that the
lack-of-fit statistics are '

GV = 0995, G5¥ = 1088 [Average 1.042].

Based on half samples, the apparent lack-of-fit G, were 0.094 and 0.089, seriously under-
valued compared to cross-validated estimates, 0.995 and 1.088 (= Gé” , GZ(Z) ).
As another trial, we constructed a 7x7 SOM, of which G, = 0.132 [In constructing the

SOM, same specifications are used as before]. We obtained the lack-of-fit statistics:

GV = 1225 G5? = 1.163 [Average 1.194].
Hence, we may tentatively conclude that 7x7 SOM is inferior to 12x4 SOM, since the
former’s lack-of-fit's are about 15% larger than those of the latter.

Figure 1 shows the 12x4 and 7x7 SOM's split by species. Of course, one cannot discern
different degrees of the lack-of-fit in SOM’s with figures only. However, there is one point
worthy to note: On 12x4 SOM, input units of the same species are clustered in square shapes,
contrasting long rectangular-shape clusters on 7x7 SOM.
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Figure 1. (a) 12x4 SOM and (b) 7x7 SOM for Fisher’'s Iris Data, Split by Species.
The cell numbers represent the number of input units hit on the nodes.

3. Re-Sampling Procedure

In the lack-of-fit evaluation procedure of Section 2, one computed the measures with half
samples. So, strictly speaking, they are not for the sample of size #z, even though we
reasonably expect the measures derived from half samples do proper roles in relative
comparison of different SOM’s. To overcome such detail problem, we propose a re-sampling
validity evaluation procedure for full sample SOM as follows.

Step 0. Re-sample # units independently from x,, -, x,, and repeat (B times). Then one
obtains
Subsample &: %@, 2} for b = 1, B

Step 1. Construct c¢; X ¢, maps with Subsample & (=1,+, B) units. Output the list of units
and corresponding nodes for each subsample SOM. Denote j,(7,) for the hitting node for
the unit 7, (=1,--,#) on Subsample b SOM. Write node weights of Subsample 6 SOM

*(b) ()
as wiyy', s We, -

Step 2. For the lack-of-fit of Subsample b units, compute
ng) - ]. 2 “ x*(b) ’:‘((“)b) " 2 for b = 1,"',B

where
‘( b _ *(b)
/A(lb) g W iy / (B_ 1)
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is the average of all subsample SOM weights on the node j,(i;,) except that of
Subsample & SOM. Note that Wﬁ("b),---, Wc'lﬁ; Y are conditionally independent of
tl(b) )

Subsample & input units x ., X, , given the observed sample x,, -, x,.

Note: de Bote, Cottrell and Verleysen (2002) proposed using bootstrap method for
assessment of SOM's reliability. They measured the degree how well neighboring pairs of
input units are represented in close nodes on bootstrapped SOM's. In contrast, my use of
bootstrap method is for fair assessment of the lack-of-fit sum of squares.

Iris Data Example (Continued)
For the 12x4 SOM on Fisher’s iris data, we generated five(= B) subsamples, of which
G = 0.42, 031, 0.39, 0.44, 040 [Median 0.40, Range 0.13] for b=1,--,5.
In contrast, 7x7 SOM vyielded
G = 0.98, 050, 0.61, 0.39, 058 [Median 0.58, Range 0.59] for &6=1,-,5.

So, we may conclude clearly that 12x4 SOM is better than 7x7 SOM in terms of validity
(honest goodness-of-fit) perspective.

Since it is quite possible that a better SOM compared to the current winner exists, we tried
out several SOM’s including 12x4. See Table 1 for the result of three repetitions in each case
with B = 5. As judged by lack-of-fit's average of medians, the best size for Fisher's :ris
data seems to be 15x5. See Figure 2 for 15x5 SOM.

Simulated Data Example
We are going to generate simulated data from known structures to assess whether the

methods work. Suppose that Z;, -, Zs; are iid N(0,1) random variables. Define

X\ =(Z,+Z3+ Z, + Z5)/2, Xo=(Z,+Z:+ Zy+ Z5)/2,

X3 = (Z)+Zy+ Z, + Z5)/2, X, = (Z,+ Z,+ Z3+ Z5)/2,

Xs=(Z1+ 2+ Z;+ Z))/2.
Then (X;,-,X;) follows the mulivariate normal distribution with mean vector 0 and
covariance matrix 0.257; + 0.75 J;. So, the first principal component PC1 is proportional to the
sum of X, -, Xs. PCl has variance 4, which is 80% of the total variance. Remaining 20%

of total variance is shared equally by four other principal components. Hence, for the
one-dimensional reduction of the data, the lack-of-fit measure is equal to 1, if one knows the

true model.
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Table 1. Subsample Lack-of-Fit's of Fisher’'s Iris Data in Several SOM's

Subsample Lack-of-Fit's
soM 1 2 3 4 |5 |Median|{JS2E¢| Range | yCrogC
6x2 [2] | 071 | 053 | 064 | 079 0.79 | 0.71 0.26
076 | 059 | 062 | 059 | 0.85 | 0.62 0.26
0.68 | 080 | 066 | 082 | 089 080 | 0.71 023 | 0.25
9x3 [2] 0.41 0.47 0.44 0.49 0.54 0.47 0.13
043 | 042 ) 045 | 066 | 033 | 0.43 0.33
037 048 | 086 | 035 | 054 | 048 | 046 0.51 | 0.32
12x4 [3] | 042 | 031} 039 | 044 | 040 | 040 0.13
043 | 025 ] 050 | 060 | 028 | 0.43 0.35
032 | 054 094 | 036 | 041 | 041 | 041 0.62 | 0.37
15x5 [3] | 044 | 031 | 0244 041 | 036 | 0.36 0.20
027 | 021 032 035 027 0.27 0.13
026 | 066 | 056 | 024 | 034 034 | 0.32 032 | 0.22
18x6 [4] | 052 | 046 | 024 | 044 | 035 | 0.44 0.28
039 | 024 | 038 | 040 | 0.26 | 0.38 0.26
029} 068 | 062 | 029 032 032 | 0.38 0.39 | 0.31
21x7 [41 | 057 | 048 | 021 | 0.21{ 041 | 041 0.36
024 022 | 043 | 045 | 035 | 0.35 0.23
0.26 | 058 | 066 | 029 | 044 | 044 | 040 0.40 | 0.33

* The number in brackets is the starting radius of node neighborhood. Ending radius is set to
1 and initial/terminal learning rates are 0.25/0.001, number of cycles per phase is 50.

Table 2 shows subsample lack-of-fit's of Simulated Data Set consisting of 400 units on
several SOM’s such as 10x4, 20x2 and 40x1 [Computer program was written in SAS/IML].
Each case was repeated three times and the number B of subsamples was set to five. By
the lack-of-fit criterion of this section, the best map size among several candidates is 40x1,
which is one-dimensional array of nodes. It is remarkable that the map’s lack-of-fit is equal
to 1.18. close to the ideal value 1.0 for one-dimensional reduction.
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Figure 2. 15x5 SOM for Fisher’s Iris Data, Split by Species.
The cell numbers represent the number of input units hit on the nodes.

To secure a related data set, we transformed (X, -, X;) into (Y, -, Y;), where
Y, = exp(X;), -, Y5 = exp (X5).
Therefore, each of Y, = exp(X,), k=1,-,5, follows a log-normal distribution.

Table 3 shows subsample lack-of-fit's of Transformed Simulated Data Set of size 400 on
several SOM’s of same sizes as before. Each case was repeated three times and the number
B of subsamples was set to five. Although the 40x1 map showed sightly poor performance
compared to the 20x2 map for the transformed data, we may say that the 40x1 grid is still
one of the bests.

Figures 3 and 4 show the weight vector’s coordinates and frequencies in the nodes of 40x1
SOM, for raw/transformed data sets. In both figures, for each of five variables, node valies
are running smoothly in an increasing mode. There is a notable difference in the figures,
however: The pattern in Figure 3 is fairly linear, while the pattern in Figure 4 is exponential.
This meets our expectation.
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Table 2. Subsample Lack-of-Fit's of Raw Simulated Data Set in Several SOM's

Subsample Lack-of-Fit's

SOM 1 2 3 4 5 | Median [pi28° | Range |Rucres®
10x4 [3,1] 198 | 166 | 140 | 169 | 1.80 ] 1.69 0.58
161 | 162 | 221 | 161 | 169 | 162 0.60

169 | 1.35| 133 | 181 | 190 | 169 | 167 | 057 | 058
20x2 [5,3] 132 | 130 | 115 | 112 | 129 | 129 0.20
1.17 | 1.30] 126 | 108 | 125]| 125 0.22

1.12 | 121 | 123 | 124 | 118 | 121 | 125 | 012 | 0.18
40x1 [10,8] 1.16 | 1.27 | 121 | 107 | 1.28 | 121 0.21
115 | 1.10| 106 | 120 | 124 | 115 0.18

1.12 | 118 | 122 121 113 | 118 | 118 | 0.09 | 0.16

* The numbers in brackets are the starting/ending radii of node neighborhood. Initial/ terminal
learning rates are set to 0.25/0.001, number of cycles per phase is 50.

Table 3. Subsample Lack-of-Fit's of Transformed Simulated Data Set in Several SOM's

Subsample Lack-of-Fit's
SOM 1 2 3 4 5 | Median [{728° | Range |[guoras®
10x4 [3,1] 202 | 228 | 225 | 234 1.87 | 2.25 0.47
1.66 | 228 | 254} 223 265 | 2.28 0.99
1.71 2.04 1.72 | 220 | 240 2.04 2.19 0.69 0.72
20x2 [5,3] 1.67 1.63 1.85 1.77 1.68 1.68 0.22
1.60 | 2.10 1.86 1.58 1.70 1.70 0.52
1.56 1.54 1.84 1.73 1.55 1.56 1.65 0.30 0.3;
40x1 [10,8] 1.63 | 2.06 1.88 161 1.73 1.73 0.45
1.71 1.80 1.71 1.68 1.66 1.71 0.14
1.58 1.56 1.78 1.68 1.63 1.63 1.69 0.23 0.27

* The numbers in brackets are the starting/ending radii of node neighborhood. Initial/ terminal
learning rates are set to 0.25/0.001, number of cycles per phase is 50.
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Figure 4. Nodes Values (Above) and Counts (Below)
for Transformed Simulated Data Set
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4. Concluding Remarks

Self-organizing map is computationally intensive compared to K-means clustering. Ten
times or more is quite common. Hence, comprehensive searches for the choice of the best map
size are not recommendable in practice. Instead, one may compare two or three shapes of
SOM with approximately same number of nodes, and, subsequently, try two or three similar
shape maps with different number of nodes. In doing so, one should keep in mind that SOM
is somewhat sensitive on the starting/ending parameters of the node neighborhood.

In this short communication, we intended to provide a method for determining the size of
SOM, which is one of fundamental issues in this research area (Koikkalainen, 1999). It is
quite certain, however, that the lack-of-fit is not all things in the choice of the best map. For
instance, interpretability and visualization should be considered simultaneously, which are not
covered in this article.
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