• 제목/요약/키워드: self-organizing feature map

검색결과 152건 처리시간 0.034초

Binary Harmony Search 알고리즘을 이용한 Unsupervised Nonlinear Classifier 구현 (Implementation of Unsupervised Nonlinear Classifier with Binary Harmony Search Algorithm)

  • 이태주;박승민;고광은;성원기;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제23권4호
    • /
    • pp.354-359
    • /
    • 2013
  • 본 논문을 통해서 우리는 최적화 알고리즘인 binary harmony search (BHS) 알고리즘을 이용하여 unsupervised nonlinear classifier를 구현하는 방안을 제시하였다. 패턴인식을 위한 기계학습이나 뇌파 신호의 분석 과정과 같이 벡터로 표현되는 특징들을 분류하는데 있어 다양한 알고리즘들이 제시되었다. 교사 학습기반의 분류 방식으로는 support vector machine과 같은 기법이 사용되어왔고, 비교사 학습 방법을 통한 분류 기법으로는 fuzzy c-mean (FCM)과 같은 알고리즘들이 사용되어 왔다. 그러나 기존에 사용해 왔던 분류 방법들은 비선형 데이터 분류에 적용하기 힘들거나 교사 학습을 적용하기 위해서 사전정보를 필요로 하는 문제점이 있다. 본 논문에서는 경험적 접근을 통해 공간상에 분포된 벡터 사이의 기하학적 거리를 최소로 만드는 벡터 집합을 선택하고 이를 하나의 클래스로 간주하는 방법을 적용한 분류법을 제시하였다. 비교 대상으로 FCM과 artificial neural network (ANN) 기반의 self-organizing map (SOM)을 제시하였다. 시뮬레이션에는 KEEL machine learing dataset을 사용하였고 그 결과, 제안된 방식이 기존 알고리즘에 비해 더 나은 우수성을 지니고 있음을 확인하였다.

한국어 파열음 인식을 위한 피쳐 셉 입력 인공 신경망 모델에 관한 연구 (A STUDY ON THE IMPLEMENTATION OF ARTIFICIAL NEURAL NET MODELS WITH FEATURE SET INPUT FOR RECOGNITION OF KOREAN PLOSIVE CONSONANTS)

  • 김기석;김인범;황희융
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 하계학술대회 논문집
    • /
    • pp.535-538
    • /
    • 1990
  • The main problem in speech recognition is the enormous variability in acoustic signals due to complex but predictable contextual effects. Especially in plosive consonants it is very difficult to find invariant cue due to various contextual effects, but humans use these contextual effects as helpful information in plosive consonant recognition. In this paper we experimented on three artificial neural net models for the recognition of plosive consonants. Neural Net Model I used "Multi-layer Perceptron ". Model II used a variation of the "Self-organizing Feature Map Model". And Model III used "Interactive and Competitive Model" to experiment contextual effects. The recognition experiment was performed on 9 Korean plosive consonants. We used VCV speech chains for the experiment on contextual effects. The speech chain consists of Korean plosive consonants /g, d, b, K, T, P, k, t, p/ (/ㄱ, ㄷ, ㅂ, ㄲ, ㄸ, ㅃ, ㅋ, ㅌ, ㅍ/) and eight Korean monothongs. The inputs to Neural Net Models were several temporal cues - duration of the silence, transition and vot -, and the extent of the VC formant transitions to the presence of voicing energy during closure, burst intensity, presence of asperation, amount of low frequency energy present at voicing onset, and CV formant transition extent from the acoustic signals. Model I showed about 55 - 67 %, Model II showed about 60%, and Model III showed about 67% recognition rate.

  • PDF

분산커널 기반의 퍼지 c-평균을 이용한 음악 데이터의 장르 분류 (Classification of Music Data using Fuzzy c-Means with Divergence Kernel)

  • 박동철
    • 전자공학회논문지CI
    • /
    • 제46권3호
    • /
    • pp.1-7
    • /
    • 2009
  • 본 논문은 효율적인 음악 데이터의 분류를 위한 방법으로 분산커널 기반의 퍼지 c-평균을 이용한 분류기 모델을 제안한다. 분산 커널 기반의 퍼지 c-평균은 주어진 오디오 데이터에서 추출된 특징벡터의 평균과 공분산 정보를 동시에 이용하여 기존의 평균값만을 사용하는 방식에 비해 성능을 월등히 향상시킬 수 있는 장점이 있다. 사용된 방식은 확률적 분포로 주어지는 데이터 사이의 거리를 분산거리척도로 측정하고, 복잡한 분류 경계를 단순화 시키는데 효율적인 커널 개념을 사용함으로서 분류의 정확도를 극대화 시킬 수 있는 장점이 있다. 제안하는 분류기의 성능을 평가하기 위하여 고전음악, 컨트리음악, 힙합, 재즈의 4개의 장르 음악데이터를 총 1200개 수집하여 실험을 진행하였다. 실험의 결과 제안된 분산커널 기반의 퍼지 c-평균을 이용하는 분류기는 기존의 방식과 비교하여 분류정확도에서 평균적으로 17.73%-21.84%의 성능향상을 보여준다.

Underutilization 문제를 해결한 퍼지 신경회로망 모델 (A Fuzzy Neural Network Model Solving the Underutilization Problem)

  • 김용수;함창현;백용선
    • 한국지능시스템학회논문지
    • /
    • 제11권4호
    • /
    • pp.354-358
    • /
    • 2001
  • 본 논문에서는 underutilization 문제를 해결한 퍼지 신경회로망 모델을 제시한다. 이 퍼지 신경 회로망은 ART-1 신경회로망과 유사한 제어 구조를 가지고 있어 유연성이 있으면서도 안정성이 있다. 또한 연결강도의 초기화가 필요 없고 ART-1 신경회로망에 비하여 잡음에 민감하지 않다. 이 퍼지 신경회로망의 학습법칙은 코호넨의 학습법칙을 변형하고 퍼지화 하였으며 누설 경쟁학습의 퍼지화와 조건 확률의 퍼지화에 기반을 두고 있다. 출력 뉴런 중에서 승자를 정한 후에 행해지는 점검 테스트에서는 유사척도로 상대적 거리를 사용하였다. 이 상대적 거리는 유클리디안 거리와 함께 데이터와 클러스터들의 대푯값들 간의 상대적인 위치를 고려한 것이다. 본 논문에서 제안한 퍼지 신경회로망과 코호넨 자기 조직화 특징 지도의 성능을 비교하기 위하여 널리 사용되어온 IRIS 데이터와 가우시안 분포 데이터를 사용하였다.

  • PDF

극궤도 기상위성 자료를 이용한 한반도의 지면피복 분류 (Classification of Land Cover over the Korean Peninsula Using Polar Orbiting Meteorological Satellite Data)

  • 서명석;곽종흠;김희수;김맹기
    • 한국지구과학회지
    • /
    • 제22권2호
    • /
    • pp.138-146
    • /
    • 2001
  • 이 연구에서는 극궤도 기상위성인 NOAA/AVHRR 시계열 자료를 이용하여 한반도의 지면 피복을 분류하였다. 일주기 기상위성자료로부터 구름이 없는 상태의 지면상태 자료를 획득하기 위하여 10일 간격 최대치 합성법 자료를 작성하였으며 27개의 10일주기 식생지수 자료들(겨울철 12, 1, 2월 자료 9개 제외)로부터 4개의 식생 계절성 자료를 작성하였다. 또한 위성자료로부터 분석한 연 최고 및 연평균 지면온도, 그리고 지형고도 자료를 이용하였다. 각 지면 피복에 대한 특성 자료 수집이 어렵기 때문에 여기서는 2단계 무감독 분류법을 이용하였다. 즉, 초기 입력자료는 신경망 기법의 일종인 SOFM을 이용하여 군집화한 다음 결정나무를 이용하여 각 군집을 분류하였다. 최종 분류 결과는 식생지수의 시계열과 지상 자료로 검증한 결과 대도시, 농지, 낙엽수림 및 상록수림 등 우리 나라의 지면 피복을 개략적으로 잘나타내고 있는 것으로 판단된다.

  • PDF

다중 클래스 아다부스트를 이용한 엘리베이터 내 군집 밀도 추정 (Crowd Density Estimation with Multi-class Adaboost in elevator)

  • 김대훈;이영현;구본화;고한석
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권7호
    • /
    • pp.45-52
    • /
    • 2012
  • 본 논문에서는 다중 클래스 아다부스트 기반의 분류기를 이용하여 엘리베이터 내 군집 밀도를 추정하는 방법을 제안한다. SOM을 사용하는 기존의 방법은 재현성이 떨어지며 충분한 성능을 내지 못한다. 제안한 방법은 GLDM(Grey-Level Dependency Matrix)과 GGDM(Grey-Gradient Dependency Matrix)의 텍스처 특징과 다중 클래스 아다부스트 기반의 분류기를 통해 실내 군집 밀도를 추정한다. 다중 클래스를 분류하기 위해 기존의 아다부스트 알고리즘에서 웨이트 업데이트 식을 변형하여 더 높은 성능의 약한 분류기를 생성하도록 하였다. 군집 밀도는 인원수에 따라 0명, 1~2명, 3~4명, 5명 이상 등 네 가지 클래스로 구분하였다. 엘리베이터 내 영상을 이용한 모의 실험 결과 제안된 방법은 기존의 방법보다 약 20% 정도의 검출률 향상을 나타내었다.

SOFM의 적용에 의한 영산강 수질 및 유량자료의 시.공간적 패턴분류 특성 (Characteristics of Spatio-temporal Pattern Classification for Water Quality and Runoff Data in the Yeongsan River by the Application of SOFM)

  • 박성천;송자섭;진영훈;노경범
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.189-193
    • /
    • 2011
  • 유역관리 및 수질 향상을 위해 다양한 환경정책이 시행되고 있으며, 최근 수질오염총량관리제의 시행으로 인해 보다 집중적인 유역관리와 수질 향상을 위한 노력이 배가되고 있다. 이러한 노력의 일환으로 현재 환경부 국립환경과학원에서는 수질오염총량관리를 위하여 단위유역의 말단지점에서 수질 및 유량자료에 대한 정기적인 측정을 8일 간격으로 시행하고 있으며, 데이터 베이스 및 웹시스템을 통하여 자료를 공개하고 있다(이호열, 2009). 이와 같은 자료의 측정과 축적은 그 분석을 통해 수질 개선을 위한 우선 관리 대상지점의 파악 등과 같이 수질오염총량관리제의 시행과 평가를 위해 사용될 수 있을 뿐만 아니라 새로운 환경정책의 수립에도 활용될 수 있을 것으로 기대된다. 그러나 현재 소수의 연구들에서만 상기의 자료를 단순히 활용한 결과를 찾을 수 있으며, 특히 측정된 수질 및 유량자료를 분석하여 발표한 연구결과 역시 소수에 지나지 않는다(김철겸 등, 2009). 측정 자료에 대한 분석 및 이에 따른 자료의 활용성 제고를 위해서 다양한 자료 분석 기법의 개발과 적용이 절실하다. 이러한 자료 분석 기법의 개발 및 적용에 관한 연구의 일환으로 최근 패턴분류를 위해 다양한 분야에서 활용되고 있는 자기조직화 특성 지도(Self Organizing Feature Map: SOFM)를 상기의 측정 자료에 적용한 연구 결과가 보고된 바 있다(진영훈 등, 2009; 2010). 본 연구에서는 수질오염총량관리제를 위해 측정되고 있는 수질 및 유량자료를 수집하여 자료에 내재되어 있는 시 공간적 특성을 분석하고자 하였다. 영산강 유역을 대상으로 하여, 본 유역 내의 단위유역들 중 황룡_A, 지석_A, 영본_A, 영본_B, 영본_C, 영본_D의 말단지점에서 측정되고 있는 BOD (Biochemical Oxygen Demand), TOC (Total Organic Carbon), T-N (Total Nitrogen), T-P (Total Phosphorus), SS (Suspended Solids) 수질농도 및 유량자료를 대상으로 연구를 진행하였다.

  • PDF

사용자 특성을 고려한 장애인 및 노령 인구를 위한 보조 소프트웨어의 개발 - 작업용 특수 전동의자를 위한 통합 사용자 인터페이스 (Development of Assistive Software for Disabled and Aged People Based on User Characteristics - Unified User Interface for Special Work Chair)

  • 김상철;전문진;이상완;박광현;변증남
    • 전자공학회논문지SC
    • /
    • 제44권4호통권316호
    • /
    • pp.8-14
    • /
    • 2007
  • 사회제도가 개선되고 기술이 발전함에 따라 고령인구와 장애인의 사회 참여가 지속적으로 증가하고 있다. 지능 로봇 및 지능형 주거공간 등의 여러 시스템들의 이들의 사회 참여를 돕기 위해 개발되었고, 실제 고령 인구와 장애인의 독립적인 생활 영위에 많은 기여를 하고 있다. 그러나 상기의 시스템들을 구축하기 위해서는 대부분 고가의 특별한 하드웨어가 요구된다. 실제 시스템을 사용하게 될 계층의 경제적 어려움을 고려하면 기존의 노트북 컴퓨터와 같은 일반적 하드웨어를 사용하는 소프트웨어 기반의 시스템의 개발이 요구된다. 한편 이러한 소프트웨어는 컴퓨터 사용에 익숙하지 않으며 신체의 움직임이 부자유스러운 사용자 계층을 위해 특수하게 제작되어야 한다. 본 논문에서는 이러한 요건들을 만족시키는 소프트웨어 기반의 보조 시스템의 관련 이론을 포함한 개발 과정을 소개하고 결과물을 제시한다.

병렬 프로그램 로그 군집화 기반 작업 실행 시간 예측모형 연구 (Runtime Prediction Based on Workload-Aware Clustering)

  • 김은혜;박주원
    • 산업경영시스템학회지
    • /
    • 제38권3호
    • /
    • pp.56-63
    • /
    • 2015
  • Several fields of science have demanded large-scale workflow support, which requires thousands of CPU cores or more. In order to support such large-scale scientific workflows, high capacity parallel systems such as supercomputers are widely used. In order to increase the utilization of these systems, most schedulers use backfilling policy: Small jobs are moved ahead to fill in holes in the schedule when large jobs do not delay. Since an estimate of the runtime is necessary for backfilling, most parallel systems use user's estimated runtime. However, it is found to be extremely inaccurate because users overestimate their jobs. Therefore, in this paper, we propose a novel system for the runtime prediction based on workload-aware clustering with the goal of improving prediction performance. The proposed method for runtime prediction of parallel applications consists of three main phases. First, a feature selection based on factor analysis is performed to identify important input features. Then, it performs a clustering analysis of history data based on self-organizing map which is followed by hierarchical clustering for finding the clustering boundaries from the weight vectors. Finally, prediction models are constructed using support vector regression with the clustered workload data. Multiple prediction models for each clustered data pattern can reduce the error rate compared with a single model for the whole data pattern. In the experiments, we use workload logs on parallel systems (i.e., iPSC, LANL-CM5, SDSC-Par95, SDSC-Par96, and CTC-SP2) to evaluate the effectiveness of our approach. Comparing with other techniques, experimental results show that the proposed method improves the accuracy up to 69.08%.

SOM 기반의 계층적 군집 방법을 이용한 계산 효율적 비디오 객체 분할 (Computation ally Efficient Video Object Segmentation using SOM-Based Hierarchical Clustering)

  • 정찬호;김경환
    • 대한전자공학회논문지SP
    • /
    • 제43권4호
    • /
    • pp.74-86
    • /
    • 2006
  • 본 논문에서는 계산 효율적이고 노이즈에 강건한 비디오 객체 분할 알고리즘을 제안한다. 움직임 분할과 색 분할을 효율적으로 결합한 시공간 분할 방법의 구현을 위해 SOM 기반의 계층적 군집 방법을 도입하여 특징 벡터들의 군집 관점에서 분할 과정을 해석함으로써 기존의 객체 분할 방법에서 정확한 분할 결과를 얻기 위해서 요구되어지는 많은 연산량과 노이즈에 의한 시스템의 성능 저하 문제를 최소화한다. 움직임 분할 과정에서는 움직임 추정 에러에 의한 영향을 최소화하기 위해서 MRF 기반의 MAP 추정 방법을 이용하여 계산한 움직임 벡터의 신뢰도를 이용한다. 또한 움직임 분할의 성능 향상을 위해서 움직임 신뢰도 히스토그램을 이용한 노이즈 제거 과정을 거칠 뿐만 아니라 자동으로 장면 내에 존재하는 객체의 수를 구하기 위해서 군집 유효성 지표를 이용한다. 객체 추적의 성능 향상을 위해 교차 투영 기법을 이용하며, 분할 결과의 시간적 일관성 유지를 위해 동적 메모리를 이용한다. 다양한 특성을 가지는 비디오 시퀀스들을 이용한 실험을 통해 제안하는 방법이 계산 효율적이고 노이즈에 강건하게 비디오 객체 분할을 수행함은 물론 기존의 구현 방법에 비해 정확한 분할 결과를 얻을 수 있음을 확인하였다.