• Title/Summary/Keyword: self-heating

Search Result 272, Processing Time 0.023 seconds

Thermal Resistance Characteristics and Fin-Layout Structure Optimization by Gate Contact Area of FinFET and GAAFET (FinFET 및 GAAFET의 게이트 접촉면적에 의한 열저항 특성과 Fin-Layout 구조 최적화)

  • Cho, Jaewoong;Kim, Taeyong;Choi, Jiwon;Cui, Ziyang;Xin, Dongxu;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.296-300
    • /
    • 2021
  • The performance of devices has been improved with fine processes from planar to three-dimensional transistors (e.g., FinFET, NWFET, and MBCFET). There are some problems such as a short channel effect or a self-heating effect occur due to the reduction of the gate-channel length by miniaturization. To solve these problems, we compare and analyze the electrical and thermal characteristics of FinFET and GAAFET devices that are currently used and expected to be further developed in the future. In addition, the optimal structure according to the Fin shape was investigated. GAAFET is a suitable device for use in a smaller scale process than the currently used, because it shows superior electrical and thermal resistance characteristics compared to FinFET. Since there are pros and cons in process difficulty and device characteristics depending on the channel formation structure of GAAFET, we expect a mass-production of fine processes over 5 nm through structural optimization is feasible.

Design Checklist for Self-sufficient Zero Energy Solar House(ZeSH) (에너지자립형 태양열 주택의 설계 및 시공 방법 체크리스트 수립 연구)

  • Yoon Jongho;Baek Namchoon;Yu Changkyun;Kim Jongil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.416-421
    • /
    • 2005
  • Most of solar system dissemination has been focused on domestic hot water system of which utilization to a building is relatively simple and safe than solar heating system. Through the survey on a cause of solar house dissemination failure in Korea, we conclude that design integration and systematic approach method for technology application are the most important element for a successful solar house. KIER(Korea Institute of Energy Research) and Hanbat National University have started new project on a development of Zero energy Solar House, called ZeSH which can be sustained just by natural energy without the support of existing fossil fuel. This is the 1st phase research of 10 years long-term ZeSH plan which develops a low-cost and $100\%$ self sufficient ZeSH. The goal of 1st phase ZeSH research is to get a $70\%$ self sufficiency only in thermal loads. Actual demonstration house, named KIER ZeSH I was designed and constructed as a result of 1st phase research work in the end of 2002. Various innovative technologies such as super insulation, high performance window, passive and active solar systems, ventilation heat recovery system are applied and evaluated to the KIER ZeSH I. A lot of computer simulations had been conducted for the optimal design and system integration in every design steps. Considering all the results from detailed hourly computer simulation, it is expected that at least $70\%$ self-sufficiency in thermal loads which is 1st phase target value can be excessively achieved in actual demonstration house. Besides, many valuable findings from the design and analysis to construction could be established such as collaboration method among the participants, practical design and construction techniques for system integration and the others. The purpose of this paper is to introduce the main findings through the development of KIER ZeSH I project. Practical guidelines in every design step for new low- or zero- energy solar house is proposed as result.

  • PDF

Comparison of Self-identified Thermal Tolerance and Wearing Habits in Winter between the Elderly Males and Females (남녀 고령자의 자각적 내한내열성과 겨울철 착의 행동 비교)

  • Park, Joonhee;Baek, Yoon-Jeong;Roh, Sang-Hyun;Lee, Joo-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.3
    • /
    • pp.530-543
    • /
    • 2018
  • This study investigated elderly winter wearing habits and self-identified thermal tolerance in order to compare differences between older males and older females. We surveyed 269 participants: 119 males (age $76.9{\pm}5.9yr$) and 150 females (age $76.1{\pm}5.7yr$). Thirty one questionnaires were used: Self-identified cold and heat tolerance, clothing behavior, lifestyles related to the cold and health care, etc. High percentage of respondents (both males and females) felt vulnerable to the cold. The total number of outdoor clothes were $9.6{\pm}1.6$ and $10.6{\pm}1.6$ in males and females, respectively (p<.05). Wearing frequencies for thermal underwear were 84.0% and 82.4% in males and females, respectively. The using percentage of auxiliary heating devices was higher in females compared to males (p<.01). Males felt more cold in the head and face compared to females (p<.01). Self-identified cold tolerance had negative relationships with the total number of winter outdoor clothes for both males (r=-0.260) and females (r=-0.222) (p<.01). The perceived old age for both males and females was 72.4 yr. Sex differences should be considered when developing guidelines for winter clothing behavior for the elderly and educating them on how to improve health and cold tolerance.

Energy Performance Evaluation of Zero Energy Technologies for Zero Energy Multi-House (공동주택의 에너지 자립을 위한 핵심요소기술의 에너지 성능평가)

  • Yoon, Jong-Ho;Kim, Byoung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.161-167
    • /
    • 2007
  • Zero Energy Multi-House(ZeMH) signifies a residential building which can be self sufficient with just new and renewable energy resources without the aid of any existing fossil fuel. For success of ZeMH, various innovative energy technologies Including passive and active systems should be well integrated with a systematic design approach. The first step for ZeMH is definitely to minimize the conventional heating and cooling loads over 50% with major energy conservation measure and passive solar features which are mainly related to building design components such as super-insulation, super window, including infiltration and ventilation issues. The purpose of this study is to analyze the thermal effect of various building design components in the early design of ZeMH. The process of the study is presented in the following. 1) selection reference model for simulation 2) verification of reference model with computer simulation program(ESP-r 9.0). 3) analysis of effect according to insulation-thickness, kinds of windows, rate of infiltration. and The simulation results indicate that almost 50% savings of conventional heating load in multi-house can be achieved with the optimum design of building components such as super insulation, super window, infiltration, ventilation.

Desalination of geothermal water by membrane distillation

  • Gryta, M.;Palczynski, M.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.147-158
    • /
    • 2011
  • Membrane distillation process was used for desalination of hot (333 K) geothermal water, which was applied in the plant producing heating water. The investigated water contained 120 g salts/$dm^3$, mainly NaCl. The mineral composition was studied using an ion chromatography method. The obtained rejection of solutes was closed to 100%, but the small amounts of $NH_3$ also diffused through the membrane together with water vapour. However, the composition of obtained distillate allowed to use it as a makeup water in the heating water system. The geothermal water under study was concentrated from 120 to 286 g NaCl/$dm^3$. This increase in the solution concentration caused the permeate flux decline by a 10-20%. The geothermal water contained sulphates, which was subjected to two-fold concentration to achieve the concentration 2.4-2.6 g $SO{_4}{^{2-}}/dm^3$ and the sulphates then crystallized in the form of calcium sulphate. As a results, an intensive membranes scaling and the permeate flux decline was observed. The XRD analysis indicated that beside the gypsum also the NaCl crystallites were deposited on the membrane surfaces. The fresh geothermal water dissolved the mixed $CaSO_4$ and NaCl deposit from the membrane surface. This property can be utilized for self-cleaning of MD modules. Using a batch feeding of MD installation, the concentration of geothermal water was carried out over 800 h, without significant performance losses.

Development of deep-seated geothermal energy in the Pohang area, Korea (경북 포항지역에서의 심부 지열수자원 개발 사례)

  • Song, Yoonho;Lee, Tae-Jong;Kim, Hyoung-Chan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.693-696
    • /
    • 2005
  • KIGAM (Korea Institute of Geoscience and Mineral Resources) launched a new project to develop the low-temperature geothermal water in the area showing high geothermal anomaly, north of Pohang city, for large-scale space heating. Surface geologic and geophysical surveys including Landsat 1M image analysis, gravity, magnetic, Magnetotelluric (MT) and controlled-source audio-frequency MT (CSAMT), and self-potential (SP) methods have been conducted and the possible fracture zone was found that would serve as deeply connected geothermal water conduit. In 2004, two test wells of 1.1km and 1.5km depths have been drilled and various kinds of borehole survey including geophysical logging, pumping test, SP monitoring, core logging and sample analysis have followed. Temperature of geothermal water at the bottom of 1.5km borehole reached over $70^{\circ}C$ and the pumping test showed that the reservoir contained huge amount of geothermal water. Drilling for the production well of 2 km depth is on going. After test utilization and the feasibility study, geothermal water developed from the production well is going to be provided to nearby apartments.

  • PDF

Numerical Analysis on Heat Transfer Characteristics in Silicon Boated by Picosecond-to-Femtosecond Ultra-Short Pulse Laser (펨토초급 극초단 펄스레이저에 의해 가열된 실리콘 내의 열전달 특성에 관한 수치해석)

  • 이성혁;이준식;박승호;최영기
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1427-1435
    • /
    • 2002
  • The main aim of the present article is numerically to investigate the micro-scale heat transfer phenomena in a silicon microstructure irradiated by picosecond-to-femtosecond ultra-short laser pulses. Carrier-lattice non-equilibrium phenomena are simulated with a self-consistent numerical model based on Boltzmann transport theory to obtain the spatial and temporal evolutions of the lattice temperature, the carrier number density and its temperature. Especially, an equilibration time, after which carrier and lattice are in equilibrium, is newly introduced to quantify the time duration of non-equilibrium state. Significant increase in carrier temperature is observed for a few picosecond pulse laser, while the lattice temperature rise is relatively small with decreasing laser pulse width. It is also found that the laser fluence significantly affects the N 3 decaying rate of Auger recombination, the carrier temperature exhibits two peaks as a function of time due to Auger heating as well as direct laser heating of the carriers, and finally both laser fluence and pulse width play an important role in controlling the duration time of non-equilibrium between carrier and lattice.

Fabrication of Porous MoSi2 material for Heating Element through Self-propagating High Temperature Synthesis Process (연소합성법에 의한 발열성 다공질 MoSi2계 재료의 제조)

  • Song, In-Hyuck;Yun, Jung-Yeul;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.62-68
    • /
    • 2004
  • In this study, SHS process has been employed to fabricate porous $MoSi_2$ material with electric-resistive heating capability through the control of pore size. The preform for SHS reaction was consisted of molybdenum powder with different sizes and silicon powder with different contained quantity. The size of the $MoSi_2$ particles thus formed was determined by the generated heat of combustion, not by the size of molybdenum powder. However, the pore size of $MoSi_2$ composite was proportional to the particle size of molybdenum powder. that is the coarser the molybdenum powder used, the larget the formed pore size. Based on these results, the porous $MoSi_2$ composite could be fabricated with a desired pore size. By orienting the porous molybdenum disilicide-based material in the form of pore size gradient, porous materials used for filters with improved dirt-holding capacity can be manufactured.

An Assessment of Korean Housewives Exposed to Polycyclic Aromatic Hydrocabons(PAHs) in Indoor Air (일부 주부의 실내공기 중 PAHs 노출에 관한 연구)

  • Lee, Tae-Hyung;Kim, Yun-Sin;Son, Bu-Soon
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.323-331
    • /
    • 2007
  • Polycyclic aromatic hydrocarbons (PAHs) are well known for strong carcinogen. However, the human exposure analysis of PAHs is quite difficult and unreliable because of hard for estimation of actual expose dose. Then urinary 1-hydroxypyrene (1-OHP) has been a biological marker of exposure to PAHs. The purpose of this study was to investigate total amount from exposure to PAHs soused by indoor occupational exposure, and residence at Seoul metropolitan area and Kyeonggi province in Korea. Thirty-five housewives were included in this study from April 2003 through February 2004. Dietary habit and general characteristics such as age, type of building, existence of passive smoking, period of residence, fuel type for heating and ventilation type were obtained by self administered questionnaire. Urine samples were collected at morning and freeze quickly. Urinary creatinine was measured for converting into 24 hr urine. Concentration of the indoor PAHs was examined by NIOSH method number 5506. Urinary 1-OHP and PAHs were analysed by HPLC. Correlation coefficient between urinary 1-OHP levels and pyrene concentration of indoor air was 0.66 and statistically significant(P<0.01). The difference of urinary 1-OHP level due to dietary habits were not significant. Urinary 1-OHP level of Spring, Summer, Autumn, and Winter were $0.21{\pm}0.12,\;0.10{\pm}0.17,\;0.16{\pm}0.12,\;0.17{\pm}0.14{\mu}g/g$ cr, respectively. The arithmetic means of urinary 1-OHP for four season tee $0.16{\pm}0.14 {\mu}g/g$ cr. There was a trend that urinary 1-OHP level of residents who dwelling in apartment were higher compared with detached home, Comparison of 1-OHP level between heating by kerosene and LPG, Much higher gas heating type than kerosene type (P<0.05). This result implies that the urinary 1-OHP can be applied as the PAHs exposure indices.

Properties of Self-hardened Inorganic Coating in the System Alumina-Silica-Calcium Oxide by the Reaction with Alkalies (알칼리 반응에 의한 알루미나-실리카-산화칼슘계 무기질 자기경화 코팅의 특성)

  • Jeon, Chang-Seob;Song, Tea-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.381-386
    • /
    • 2010
  • Some basic properties of inorganic coatings hardened by the room temperature reaction with alkalies were examined. The coating paste was prepared from the powders in the system $Al_2O_3-SiO_2$-CaO using blast furnace slag, fly ash and amorphous ceramic fiber after mixing with a solution of sodium hydroxide and water glass. The mineralogical and morphological examinations were performed for the coatings prepared at room temperature and after heating to $1200^{\circ}C$ respectively. The binding force of the coating hardened at room temperature was caused by the formation of fairly dense matrix mainly composed of oyelite-containing amorphous phase formed by the reaction between blast furnace slag and alkali solution. At the temperature, fly ash and ceramic fiber was not reacted but imbedded in the binding phase, giving the fluidity to the paste and reinforcing the coating respectively. During heating up to $1200^{\circ}C$, instead of a break in the coating, anorthite and gehlenite was crystallized out by the reaction among the binding phase and unreacted components in ternary system. The crystallization of these minerals revealed to be a reason that the coating maintains dense morphology after heating. The maintenance of binding force after heat treatment is seemed to be also caused by the formation of welldispersed fiber-like mineral phase which is originated from the shape of the amorphous ceramic fiber used as a raw materials.