• 제목/요약/키워드: self-damping

검색결과 105건 처리시간 0.026초

Rigid Core 샌드위치 구조의 초고속 공작기계 베드 적용에 관한 연구 (Application of Sandwich Structure with Rigid Core for High Speed Machine Tool Bed)

  • 서정도;이대길;김태형;박보선;최원선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.113-116
    • /
    • 2003
  • To maximize the productivity in machining molds and dies, machine tools should operate at high speeds. During the high speed operation of moving frames or spindles, vibration problems are apt to occur if the machine tool structures are made of conventional steel materials with inferior damping characteristics. However, self-excited vibration or chatter is bound to occur during high speed machining when cutting speed exceeds the stability limit of machine tool. Chatter is undesirable because of its adverse effect on surface finish, machining accuracy, and tool lift. Furthermore, chatter is a major cause of reducing production rate because, if no remedy can be found, metal removal rates have to be lowered until vibration-free performances is obtained. Also, the resonant vibration of machine tools frequently occurs when operating frequency approaches one of their natural frequencies because machine tools have several natural frequencies due to their many continuous structural elements. However, these vibration problems are closely related to damping characteristics of machine tool structures. This paper presents the use of polymer concrete and sandwich structures to overcome vibration problems. The polymer concrete has high potential for machine tool bed due to its good damping characteristics with moderate stiffness. In this study, a polymer concrete bed combined with welded steel structure i.e., a hybrid structure was designed and manufactured for a high-speed gantry-type milling. Also. its dynamic characteristics were measured by modal tests.

  • PDF

2자유도계 모델을 이용한 디스크 브레이크 스퀼 소음에 대한 댐핑의 영향에 관한 연구 (The Effect of Damping of a Two-degree-of-freedom Model for the Disc Brake Squeal Noise)

  • 신기홍;조용구;오재응
    • 한국소음진동공학회논문집
    • /
    • 제13권12호
    • /
    • pp.903-910
    • /
    • 2003
  • A two-degree-of-freedom model is suggested to describe basic dynamical behaviors of the interaction between the pad and the disc of a disc brake system. Although a pad (and a disc) has many modes of vibration in practice, only one mode of each component Is considered. In this paper, a linear analysis is performed by means of the stability analysis to show various conditions for the system to become unstable, and is based on the assumption that the existence of limit cycle (this corresponds to an unstable equilibrium point inside the limit cycle) represents the squeal state of the disc brake system. The results of the stability analysis show that the damping of the disc is as much Important as that of the pad, whereas the damping of the pad only is considered In most practical situations.

폴리머 콘크리트 공작기계 베드의 설계와 제작 (Design and Manufacture of Polymer Concrete Machine Tool Bed)

  • 서정도;이대길;김태형;박보선;최원선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.32-36
    • /
    • 2002
  • High-speed movement and high-precision machining are the two most important requirements of present machine tool structures to reduce machining time and to increase the precision of products in various industrial fields such as semiconductor, automobile, and mold fabrication. The high speed operation of machine tools tue usually restricted not only by the low stiffness but also by the low damping of machine tool structures, which induces vibration during high speed machining. If the damping of machine tool structures is low, self induced or regenerative vibrations are bound to occur at high speed operation because the natural frequencies of machine tool structures can not be increased indefinitely. Therefore, the high damping capacity of a machine tool structure is an important factor for high speed machine tool structures. Polymer concrete has high potential for machine tool bed due to its good damping characteristics. In this study, a polymer concrete bed combined with welded steel structure i.e., a hybrid structure was desisted and manufactured for a high-speed gantry-type milling machine through static and dynamic analyses using finite element method. Then the dynamic characteristics were tested experimentally.

  • PDF

Characterization and modeling of a self-sensing MR damper under harmonic loading

  • Chen, Z.H.;Ni, Y.Q.;Or, S.W.
    • Smart Structures and Systems
    • /
    • 제15권4호
    • /
    • pp.1103-1120
    • /
    • 2015
  • A self-sensing magnetorheological (MR) damper with embedded piezoelectric force sensor has recently been devised to facilitate real-time close-looped control of structural vibration in a simple and reliable manner. The development and characterization of the self-sensing MR damper are presented based on experimental work, which demonstrates its reliable force sensing and controllable damping capabilities. With the use of experimental data acquired under harmonic loading, a nonparametric dynamic model is formulated to portray the nonlinear behaviors of the self-sensing MR damper based on NARX modeling and neural network techniques. The Bayesian regularization is adopted in the network training procedure to eschew overfitting problem and enhance generalization. Verification results indicate that the developed NARX network model accurately describes the forward dynamics of the self-sensing MR damper and has superior prediction performance and generalization capability over a Bouc-Wen parametric model.

소나 음향창의 설계 인자가 난류 유동 유기 자체 소음의 전달 함수에 미치는 영향 해석 (The Influence of Design Factors of Sonar Acoustic Window on Transfer Function of Self Noise due to Turbulent Boundary Layer)

  • 신구균;서영수;강명환;전재진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.568-574
    • /
    • 2012
  • Turbulent boundary layer noise is already a significant contributor to sonar self noise. For developing acoustic window of sonar system to reduce self noise, a parametric study of design factors of acoustic window is presented. Distance of sensor array from acoustic window, material and damping layer are studied as design factors to influence in the characteristics of the transfer function of self noise. As the result these design factors make change the characteristics of transfer function slightly. Among design factors the location of sensor array is most important parameter in the self noise reduction.

  • PDF

An autonomous synchronized switch damping on inductance and negative capacitance for piezoelectric broadband vibration suppression

  • Qureshi, Ehtesham Mustafa;Shen, Xing;Chang, Lulu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권4호
    • /
    • pp.501-517
    • /
    • 2016
  • Synchronized switch damping (SSD) is a structural vibration control technique in which a piezoelectric patch attached to or embedded into the structure is connected to or disconnected from the shunt circuit in order to dissipate the vibration energy of the host structure. The switching process is performed by a digital signal processor (DSP) which detects the displacement extrema and generates a command to operate the switch in synchronous with the structure motion. Recently, autonomous SSD techniques have emerged in which the work of DSP is taken up by a low pass filter, thus making the whole system autonomous or self-powered. The control performance of the previous autonomous SSD techniques heavily relied on the electrical quality factor of the shunt circuit which limited their damping performance. Thus in order to reduce the influence of the electrical quality factor on the damping performance, a new autonomous SSD technique is proposed in this paper in which a negative capacitor is used along with the inductor in the shunt circuit. Only a negative capacitor could also be used instead of inductor but it caused saturation of negative capacitor in the absence of an inductor due to high current generated during the switching process. The presence of inductor in the shunt circuit of negative capacitor limits the amount of current supplied by the negative capacitance, thus improving the damping performance. In order to judge the control performance of proposed autonomous SSDNCI, a comparison is made between the autonomous SSDI, autonomous SSDNC and autonomous SSDNCI techniques for the control of an aluminum cantilever beam subjected to both single mode and multimode excitation. A value of negative capacitance slightly greater than the piezoelectric patch capacitance gave the optimum damping results. Experiment results confirmed the effectiveness of the proposed autonomous SSDNCI technique as compared to the previous techniques. Some limitations and drawbacks of the proposed technique are also discussed.

서보전동기 구동시스템의 자기동조 비례적분 속도제어기 설계 (Design of a self-tunig PI speed controller for servo systems)

  • 문경주;정유석;손영익
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.128-130
    • /
    • 2008
  • This paper presents an algorithm to design a self-tuning proportional-integral(PI) speed controller for servo systems. The control gains are calculated with estimated system parameters, i.e. inertia and viscous damping which are estimated by initial operation. The simulation and experimental results show the feasibility and performance of the proposed algorithm.

  • PDF

속도 압력항의 마찰 기인 4 자유도계 시스템의 자려진동에 대한 연구 (The study on the 4-dof friction induced self-oscillation system with friction coefficient of velocity and pressure)

  • 조용구;신기홍;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.255-261
    • /
    • 2002
  • A four-degree of freedom model is suggested to understand the basic dynamical behaviors of the normal interaction between two masses of the friction induced normal vibration system. The two masses may be considered as the pad and the disk of the brake. The phase space analysis is performed to understand complicated in-plane dynamics of the non-linear model. Attractors in the phase space are examined for various conditions of the parameters. In certain conditions, the attractor becomes a limit cycle showing the stick-slip phenomena. In this paper, on the basis of the in-plane motion not only the existence of the limit cycle but also the size of the limit cycle is examined o demonstrate the non-linear dynamics that leads the unstable state and then the normal vibration is investigated as the state of the in-plane motion For only one case of the system frequency(two masses with same natural frequencies), the propensity of the normal vibration is discussed in detail. The results show an important fact that it may be not effective when too much damping is present in the only one part of the masses.

  • PDF

Experimental investigation of amplitude-dependent self-excited aerodynamic forces on a 5:1 rectangular cylinder

  • Wang, Qi;Wu, Bo;Liao, Hai-li;Mei, Hanyu
    • Wind and Structures
    • /
    • 제34권1호
    • /
    • pp.73-80
    • /
    • 2022
  • This paper presents a study on amplitude-dependent self-excited aerodynamic forces of a 5:1 rectangular cylinder through free vibration wind tunnel test. The sectional model was spring-supported in a single degree of freedom (SDOF) in torsion, and it is found that the amplitude of the free vibration cylinder model was not divergent in the post-flutter stage and was instead of various stable amplitudes varying with the wind speed. The amplitude-dependent aerodynamic damping is determined using Hilbert Transform of response time histories at different wind speeds in a smooth flow. An approach is proposed to extract aerodynamic derivatives as nonlinear functions of the amplitude of torsional motion at various reduced wind speeds. The results show that the magnitude of A2*, which is related to the negative aerodynamic damping, increases with increasing wind speed but decreases with vibration amplitude, and the magnitude of A3* also increases with increasing wind speed but keeps stable with the changing amplitude. The amplitude-dependent aerodynamic derivatives derived from the tests can also be used to estimate the post-flutter response of 5:1 rectangular cylinders with different dynamic parameters via traditional flutter analysis.

비대칭 터빈 로터 실에 기인한 축 가진력 (Rotordynamic Forces Due to Rotor Sealing Gap in Turbines)

  • 김우준;송범호;송성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.545-548
    • /
    • 2002
  • Turbines have been known to be particularly susceptible to flow-induced self-excited vibration. In such vibrations, direct damping and cross stiffness effects of aerodynamic forces determine rotordynamic stability. In axial turbines with eccentric shrouded rotors, the non-uniform sealing gap causes azimuthal non-uniformities in the seal gland pressure and the turbine torque which destabilize the rotor system. Previously, research efforts focused solely on either the seal flow or the unshrouded turbine passge flow. Recently, a model for flow in a turbine with a statically offset shrouded rotor has been developed and some stiffness predictions have been obtained. The model couples the seal flow to the passage flow and uses a small perturbation approach to determine nonaxiymmetric flow conditions. The model uses basic conservation laws. Input parameters include aerodynamic parameters (e.g. flow coefficient, reaction, and work coefficient); geometric parameters (e.g. sealing gap, depth of seal gland, seal pitch, annulus height); and a prescribed rotor offset. Thus, aerodynamic stiffness predictions have been obtained. However, aerodynamic damping (i.e. unsteady aerodynamic) effects caused by a whirling turbine has not yet been examined. Therefore, this paper presents a new unsteady model to predict the unsteady flow field due to a whirling shrouded rotor in turbines. From unsteady perturbations in velocity and pressure at various whirling frequencies, not only stiffness but also damping effects of aerodynamic forces can be obtained. Furthermore, relative contributions of seal gland pressure asymmetry and turbine torque asymmetry are presented.

  • PDF