• Title/Summary/Keyword: self-compacting

Search Result 230, Processing Time 0.026 seconds

Fundamental Properties of Self-Compacting Concrete Using Viscosity Modifying Admixture (증점제를 사용한 고유동콘크리트의 기초 물성)

  • 김진철;안태송;문한영
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.69-78
    • /
    • 1999
  • Hydroxyethyl cellulose -based-viscosity modifying admixture and melamine-basd-superplasticizer were selected to be admixtures for self-compacting concrete based on the test results of fluidity and air content of mortar using 3 different viscosity modifying admixtures. The experimental results show that the initial and final set of self-compacting concrete and fly ash concrete with viscosity modifying admixture only have been delayed approximately 5 hours and 8~9 hours, respectively. It is found that the optimum dosage of viscosity modifying admixtures, coarse aggregate and cement content are 0.2% of water content, under 742 kg/$\textrm{m}^3$ and over 364 kg/$\textrm{m}^3$, respectively. Test results also show that the optimum fly ash in replacement of cement is 10% of cement weight for the enhancement of fluidity and long-term strength.

A Study on Basic Properties of Super Early Strength Self Compacting Concretes( I ) (속경성 자기충전 콘크리트의 기초특성 연구( I ))

  • 엄태선;임채용;유재상;이종열;이근호;한재명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.79-84
    • /
    • 2002
  • We carried out the feasibility study of super early self compacting concrete having the characteristics of 1 day demoulding without steam curing, high flowable concrete with self compacting, high strength and high durability etc. Here, We test and selected by several methods using high early cement with and without admixtures for the condition of super early strength self compacting concrete's manufacture (SSCC). we sucessed to meet at the goal of SSCC with 20-35N/mm$^2$ at 1 day, without steam curing and with slump flow about 60-65cm. We continue to search the effectual conditions of SSCC's manufacture by changing mix designs, several of admixture (superplasticizer, stabilising agent), slag, fly ash, high early cement and apply the products for practical use.

  • PDF

Energy absorption of fibrous self compacting reinforced concrete system

  • Senthil, K.;Satyanarayanan, K.S.;Rupali, S.
    • Advances in concrete construction
    • /
    • v.4 no.1
    • /
    • pp.37-47
    • /
    • 2016
  • The objective of the present work is to evaluate the influence of two different methods of improving the ductility of Reinforced Concrete Frames and their influence on the full range behavior of the frames with M40 grade of concrete. For this purpose one fourth scale reinforced concrete square frames are experimentally tested subjected to static cyclic loading for three cases and monotonic loading for one case. The parameters are varied as method introducing ductility to the frame viz. (i) by using conventional concrete (ii) adding 1% of steel fibres by volume of concrete at hinging zones (iii) using self-compacting concrete with fibres at hinging zones. The energy absorption by ductile and non-ductile frames has been compared. The behavior of frames tested under cyclic loading have revealed that there is a positive trend in improvement of ductility of frames when fibrous concrete is used along with self-compacting concrete.

Numerical simulation of wedge splitting test method for evaluating fracture behaviour of self compacting concrete

  • Raja Rajeshwari B.;Sivakumar, M.V.N.;Sai Asrith P.
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.265-273
    • /
    • 2024
  • Predicting fracture properties requires an understanding of structural failure behaviour in relation to specimen type, dimension, and notch length. Facture properties are evaluated using various testing methods, wedge splitting test being one of them. The wedge splitting test was numerically modelled three dimensionally using the finite element method on self compacting concrete specimens with varied specimen and notch depths in the current work. The load - Crack mouth opening displacement curves and the angle of rotation with respect to notch opening till failure are used to assess the fracture properties. Furthermore, based on the simulation results, failure curve was built to forecast the fracture behaviour of self-compacting concrete. The fracture failure curve revealed that the failure was quasi-brittle in character, conforming to non-linear elastic properties for all specimen depth and notch depth combinations.

The crack propagation of fiber-reinforced self-compacting concrete containing micro-silica and nano-silica

  • Moosa Mazloom;Amirhosein Abna;Hossein Karimpour;Mohammad Akbari-Jamkarani
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.495-511
    • /
    • 2023
  • In this research, the impact of micro-silica, nano-silica, and polypropylene fibers on the fracture energy of self-compacting concrete was thoroughly examined. Enhancing the fracture energy is very important to increase the crack propagation resistance. The study focused on evaluating the self-compacting properties of the concrete through various tests, including J-ring, V-funnel, slump flow, and T50 tests. Additionally, the mechanical properties of the concrete, such as compressive and tensile strengths, modulus of elasticity, and fracture parameters were investigated on hardened specimens after 28 days. The results demonstrated that the incorporation of micro-silica and nano-silica not only decreased the rheological aspects of self-compacting concrete but also significantly enhanced its mechanical properties, particularly the compressive strength. On the other hand, the inclusion of polypropylene fibers had a positive impact on fracture parameters, tensile strength, and flexural strength of the specimens. Utilizing the response surface method, the relationship between micro-silica, nano-silica, and fibers was established. The optimal combination for achieving the highest compressive strength was found to be 5% micro-silica, 0.75% nano-silica, and 0.1% fibers. Furthermore, for obtaining the best mixture with superior tensile strength, flexural strength, modulus of elasticity, and fracture energy, the ideal proportion was determined as 5% micro-silica, 0.75% nano-silica, and 0.15% fibers. Compared to the control mixture, the aforementioned parameters showed significant improvements of 26.3%, 30.3%, 34.3%, and 34.3%, respectively. In order to accurately model the tensile cracking of concrete, the authors used softening curves derived from an inverse algorithm proposed by them. This method allowed for a precise and detailed analysis of the concrete under tensile stress. This study explores the effects of micro-silica, nano-silica, and polypropylene fibers on self-compacting concrete and shows their influences on the fracture energy and various mechanical properties of the concrete. The results offer valuable insights for optimizing the concrete mix to achieve desired strength and performance characteristics.

A Study on Properties of Self-Compacting Concrete with waste marble powder (폐 대리석 분말을 활용한 자기충전 콘크리트의 특성)

  • Jeong, Euy-Chang;Lee, Yong-Moo;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.76-77
    • /
    • 2013
  • The paper study on the mechanical properties of self-compacting concrete with waste marble powder. A change in the replacement ratio s of waste marble powder was measured compressive strength and slump flow, U-Box. As a results, Slump flow and U-box using waste marble powder tend to increase slump flow and compacting with replacement ratio. As the concrete with a replacement ratio of copper slag up to 10% was found to have a compressive strength superior to that of plain.

  • PDF

A Study on the Properties of Self-Compacting Concrete according to mixing ratio of Waste Concrete Powder (폐콘크리트 분말의 혼합률에 따른 자기충전 콘크리트의 특성에 관한 연구)

  • Choi, Yun-Wang;Moon, Dae-Joong;Kim, Sung-Su;Choi, Se-Jin;Lee, Seong-Yeun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.513-516
    • /
    • 2006
  • Waste concrete powder(WCP) is a secondary by-product generated while processing waste concrete manufactured to coarse and fine aggregates for concrete. In order to assess the possibility of using WCP as admixture for self-compacting concrete, self-compactability, compressive strength and durability of self-compacting concrete containing waste concrete powder were investigated. Experimental results of this study appeared that in case of SCC mixed with WCP only, self-compactability and compressive strength decreased with increasing mixing ratio of WCP. When Blast-furnace slag(BFS) was added to SCC, self-compactability and compressive strength for a unit amount of cement increased. Also, SCC containing 15% BFS and 15%, 30% and 45% WCP, the dry shrinkage and carbonation depth appeared a tendency to decrease with increasing mixing ratio.

  • PDF

Effect of Powder and Aggregates on Compactability of High Performance Concrete

  • Lee, Seung-Han;Han, Hyung-sub
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.19-28
    • /
    • 1999
  • This study treated self-compacting high Performance concrete as two Phase materials of Paste and aggregates and examined the effect of powder and aggregates on self-compacting high performance, since fluidity and segregation resistance of fresh concrete are changed mainly by paste. To improve the fluidity and self-compactibility of concrete, optimum powder ratio of self-compacting high performance concrete using fly ash and blast-furnace slag as powders were calculated. This study was also designed to provide basic materials for suitable design of mix proportion by evaluating fluidity and compactibility by various volume ratios of fine aggregates, paste, and aggregates. As a result, the more fly ash was replaced, the more confined water ratio was reduced because of higher fluidity. The smallest confined water ratio was determined when 15% blast-furnace slag was replaced. The lowest confined water ratio was acquired when 20% fly ash and 15% blast-furnace slag were replaced together. The optimum fine aggregates ratio with the best compactibility was the fine aggregate ratio with the lowest percentage of void in mixing coarse aggregate and fine aggregate In mixing the high performance concrete. Self-compacting high performance concrete with desirable compactibility required more than minimum of unit volume weight. If the unit volume weight used was less than the minimum, concrete had seriously reduced compactibility.

  • PDF

An Experimental Study to Evaluate the Flexural Performance of Steel Fiber-Reinforced Self-Compacting Concrete (강섬유를 보강한 자기충전 콘크리트의 휨 성능 평가를 위한 실험 연구)

  • Park, Yon-Dong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.166-175
    • /
    • 2009
  • An experimental study was carried out to estimate the flexural performance of steel fiberreinforced self-compacting concrete. Seven slabs with three different steel fiber-reinforced concretes were prepared to make beam specimens. After proper curing period, each slab was cut to five beams with a diamond saw. The beam specimen was tested with displacement control method to obtain load-deflection curve. As the results, the self-compacting concrete beam showed higher flexural strength, ductility and toughness index compared to the normal concrete beam. This means that steel fiber-reinforced self-compacting concrete can be used more widely in the field of architecture and civil engineering because of its self-compactability and good mechanical properties.

Optimum Mix Proportion and Characteristics of the Combined Self Compacting Concrete according to Cement Types (시멘트 종류에 따른 병용계 자기충전 콘크리트의 최적배합비와 특성)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2009
  • This study is aimed to derive the optimum mix proportion of the combined self compacting concrete according to cement types (blast-furnace slag cement and belite cement) and to propose the basic data to field construction work after evaluating the quality properties. Specially, lime stone powder (LSP) as binder and viscosity agent are used in the combined self compacting concrete because slurry wall of an underground LNG storage tank should be kept stability of quality during concrete working. Replacement ratio of LSP is determined by confined water ratio test and main design factors including fine aggregate ratio ($S_r$), coarse aggregate ratio ($G_v$) and water-cement ratio (W/C) are selected. Also, quality properties including setting time, bleeding content, shortening depth and hydration heat on the optimum mix proportion of the combined self compacting concrete according to cement type are compared and analyzed. As test results, the optimum mix proportion of the combined self compacting concrete according to cement type is as followings. 1) Slag cement type-replacement ratio of LSP 13.5%, $S_r$ 47% and W/C 41%. 2) Belite cement type-replacement ratio of LSP 42.7%, Sr 43% and W/C 51%. But optimum coarse aggregate ratio is 53% regardless of cement types. Also, as test results regarding setting time, bleeding content, shortening depth and hydration heat of the combined self compacting concrete by cement type, belite cement type is most stable in the quality properties and is to apply the actual construction work.