• Title/Summary/Keyword: selenoprotein

Search Result 24, Processing Time 0.031 seconds

The Influence of Bisphenol A on Selenoprotein N Expression Genes during Zebrafish Embryogenesis (Bisphenol A가 Zebrafish 발생과정 중 Selenoprotein N 발현 유전자에 미치는 영향)

  • Gwak, Young-Gook;Yeo, Min-Kyeong
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.3
    • /
    • pp.179-186
    • /
    • 2008
  • 내분비계 장애물질 중 에스트로겐성 특성을 지닌 것으로 알려진 bisphenol A에 폭로되었을 때에 나타나는 이상 증상과 selenoprotein N 결핍 증상은 유사성이 있는 것으로 관찰되었다. 이에 본 연구에서는 bisphenol A에 폭로된 생물체의 selenoprotein N 유전자 발현에 영향을 미치는지에 관해 연구하였다. 실험동물은 zebrafish (Danio rerio, wild type)의 수정란을 사용하였다. Zebrafish의 수정란은 서로 다른 농도의 bisphenol A (0.1, 1, 10 ppm)에 노출하였다. 각각의 폭로 환경에서 부화된 치어를 시료로 selenoprotein N 유전자 발현을 RT-PCR방법에 의해 알아보았다. 그 결과, bisphenol A는 척추이상과 심장이상이 나타나 selenoprotein N 이상시 나타나는 현상과 유사성을 보였다. Selenoprotein N 유전자 발현은 bisphenol A 폭로 농도가 높아짐에 따라 유전자 발현 농도가 낮아지는 것으로 관찰되었다. 특히 1 ppm 농도에서는 대조군이나 0.1 ppm 농도보다 catalase의 활성이 높게 나타나 특정 농도에서 bisphenol A에 의한 영향이 나타나는 것을 알 수 있었다.

Localization patterns of phospholipid hydroperoxide glutathione peroxidase mRNA in Mouse Organs

  • Seo, Dong-Suk;Nam, Sang-Yoon;Kang, Jong-Koo
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.163-163
    • /
    • 2001
  • Selenium (Se) is an essential micronutrient for mammals and its biological functions are mediated by selenoprotein. In tissues, Se is incorporated into the selenoprotein by recognition of the UGA codon as a stop codon for selenoprotein. Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is an antioxidant selenoprotein that belongs to the superfamily of selenium-dependent peroxidase.(omitted)

  • PDF

Expression pattern of selenoprotein genes during embryogenesis

  • No, Kyong-Ok;Nam, Sang-Yoon;Kwon, Young-Bang;Kang, Jong-Koo
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.162-162
    • /
    • 2001
  • Selenium is an essential micronutrient for mammals and its biological functions are mediated by a selenoprotein. The mitochondrial capsule selenoprotein (MCS) is a selenoprotein that is necessary for the maintenance and stabilization of the sperm mitochondrial membrane.(omitted)

  • PDF

Cell Proliferation and Motility Are Inhibited by G1 Phase Arrest in 15-kDa Selenoprotein-Deficient Chang Liver Cells

  • Bang, Jeyoung;Huh, Jang Hoe;Na, Ji-Woon;Lu, Qiao;Carlson, Bradley A.;Tobe, Ryuta;Tsuji, Petra A.;Gladyshev, Vadim N.;Hatfield, Dolph L.;Lee, Byeong Jae
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.457-465
    • /
    • 2015
  • The 15-kDa selenoprotein (Sep15) is a selenoprotein residing in the lumen of the endoplasmic reticulum (ER) and implicated in quality control of protein folding. Herein, we established an inducible RNAi cell line that targets Sep15 mRNA in Chang liver cells. RNAi-induced Sep15 deficiency led to inhibition of cell proliferation, whereas cell growth was resumed after removal of the knockdown inducer. Sep15-deficient cells were arrested at the G1 phase by upregulating p21 and p27, and these cells were also characterized by ER stress. In addition, Sep15 deficiency led to the relocation of focal adhesions to the periphery of the cell basement and to the decrease of the migratory and invasive ability. All these changes were reversible depending on Sep15 status. Rescuing the knockdown state by expressing a silent mutant Sep15 mRNA that is resistant to siRNA also reversed the phenotypic changes. Our results suggest that SEP15 plays important roles in the regulation of the G1 phase during the cell cycle as well as in cell motility in Chang liver cells, and that this selenoprotein offers a novel functional link between the cell cycle and cell motility.

Effects of Selenate on Adipocyte Differentiation and the Expression of Selenoproteins in 3T3-L1 Cells (3T3-L1세포에서 selenate의 처리가 세포의 분화와 selenoprotein의 발현에 미치는 영향)

  • Park, Seol Hui;Moon, Yang Soo
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1085-1091
    • /
    • 2014
  • The purpose of this study was to determine the effect of selenate on adipocyte differentiation and to identify genes involved in the modulation of adipogenesis in 3T3-L1 cells. To test the effect of selenate on adipocyte differentiation, adipogenesis was induced in cells using various concentrations ($0-100{\mu}M$) of selenate. Various phases of adipogenesis were induced: postconfluent (PC), early phase (EP, d0-d2), postmitotic growth arrest (PM, d2-d4), and all period (AP). The PC cells exposed to selenate for 24 h displayed dose-dependent inhibition of intracellular lipid droplet accumulation on day 6 of adipogenesis. Two days of selenate treatment at EP or AP inhibited adipogenesis, with an approximately 20-80% reduction in lipid accumulation compared to that of a control (p<0.05). When preadipocytes were exposed to selenate during the PM period, the antiadipogenic effect of selenate was attenuated. Two types of selenoprotein genes (Seps1 and Sepp1) were up-regulated by the selenate treatment during mitotic clonal expansion, whereas these genes were down-regulated during PM growth arrest (p<0.05). The findings demonstrate the antiadipogenic function of selenate and the possible involvement of Sepp1 and Seps1 genes in selenate-inhibited adipogenesis in 3T3-L1 cells.

A study of relationship between stomach cancer and selenoproteins in Korean human blood serum (한국인 혈청에서의 셀레노 단백질과 위암과의 상관관계 연구)

  • Park, Myungsun;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.417-424
    • /
    • 2015
  • In this study, the relationship between selenoprotein concentrations in blood and stomach cancer have been searched for Korean. The concentration of each selenoprotein in blood serum was analyzed and the correlation between the concentration and stomach cancer was studied to find a potential for using Selenium as a biomarker. In concentration determination, a simple calibration curve method was used with the monitoring of m/z 78 without the use of solid phase extraction. This is a lot more simple than the method using SPE with post column isotope dilution. The result obtained from the analysis of CRM BCR-637, 72.20±3.35 ng·g−1, showed similar value of reference value (81±7 ng·g−1). The total concentration of Se for the controlled group, cardiovascular patients group, was 105.70±21.20 ng·g−1. This value was the same as normal healthy person reported earlier. Each selenoprotein concentration of GPx, SelP and SeAlb was 26.12±7.84, 65.15±14.50, 14.43±6.99 ng·g−1, respectively. The distribution of each selenoprotein was 24.7%, 61.6%, and 13.7%, which was similar to the normal person. The result of stomach cancer patients, the total concentration of Se was 76.11±28.12 ng·g−1 and each concentration of GPx, SelP and SeAlb was 15.41±9.01, 50.83±17.91, and 9.87±5.21 ng·g−1, respectively. The total and each selenoprotein concentration level showed significant decrease for the stomach cancer patients. The level of decrease was 41.0% for GPx, 22.0% for SelP, and 31.6% for SeAlb. However, the distribution of each selenoprotein was not much different. Either total Selenium or each selenoprotein could be used as a possible index for the diagnosis of cancer. However, in age group study, it is shown that young age group (30's-40's) did not show much difference.

Antioxidative Role of Selenoprotein W in Oxidant-Induced Mouse Embryonic Neuronal Cell Death

  • Chung, Youn Wook;Jeong, Daewon;Noh, Ok Jeong;Park, Yong Hwan;Kang, Soo Im;Lee, Min Goo;Lee, Tae-Hoon;Yim, Moon Bin;Kim, Ick Young
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.609-613
    • /
    • 2009
  • It has been reported that selenoprotein W (SelW) mRNA is highly expressed in the developing central nerve system of rats, and its expression is maintained until the early postnatal stage. We here found that SelW protein significantly increased in mouse brains of postnatal day 8 and 20 relative to embryonic day 15. This was accompanied by increased expression of SOD1 and SOD2. When the expression of SelW in primary cultured cells derived from embryonic cerebral cortex was knocked down with small interfering RNAs (siRNAs), SelW siRNA-transfected neuronal cells were more sensitive to the oxidative stress induced by treatment of $H_2O_2$ than control cells. TUNEL assays revealed that $H_2O_2$-induced apoptotic cell death occurred at a higher frequency in the siRNA-transfected cells than in the control cells. Taken together, our findings suggest that SelW plays an important role in protection of neurons from oxidative stress during neuronal development.

Nutritional Biochemistry of Selenium (셀레늄의 영양생화학)

  • Choi, Yong-Soon;Hesketh, John E.
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.5
    • /
    • pp.661-670
    • /
    • 2006
  • Selenium (Se) obtained from dietary sources including cereals, grains and vegetables is an essential micronutrient for normal function of the body. Plants convert Se into selenomethionine and incorporate it into proteins in place of methionine, while higher animals synthesize selenoproteins containing selenocysteine. Excessive Se in the body is methylated stepwise to methylated selenium metabolites from selenide. Both inorganic and organic forms of selenium can be the nutritional sources in human, and they are transformed to selenide and then the amino acid selenocysteine attached to a specific $tRNA^{ser(sec)}$. The selenocysteine (Sec) is incorporated into selenoprotein sequences by the UGA codon. The decoding of UGA as Sec requires specific mechanisms because UGA is normally read as a stop codon: cis-acting sequences in the mRNA (the selenocysteine insertion sequence, SECIS, within the 3'untranslated region) and trans -acting factors dedicated to Sec incorporation are required for incorporation of Sec during translation of selenoprotein mRNAs. Approximately 25 selenoproteins have been identified in mammals. Several of these, including glutathione peroxidases, thioredoxin reductases and selenoprotein P, have been purified or cloned, allowing further characterization of their biological function. The antioxidant properties of selenoproteins help prevent cellular damage from free radicals which may contribute to the development of chronic disease such as cancer and heart disease. Other selenoproteins have important roles in regulation of thyroid function and play a role in the immune system. Daily selenium iatake was reported to be $42.0{\pm}16.9{\mu}g/day$ in Korean adult women. This review focuses on the metabolism and biological functions of selenium, and the nutritional status of selenium in the Korean population.

HepG2 세포의 산화적 손상에 대한 산삼 추출물의 보호효과 - DNA chip을 이용하여 -

  • Kim, Hyung-Seok;Park, Hee-Soo;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.10 no.1 s.22
    • /
    • pp.121-135
    • /
    • 2007
  • Objectives : This study was carried out to examine protective effect of wild ginseng extract on HepG2 human hepatoma cell line against tert-Butyl hydroperoxide (t-BHP)-induced oxidative damage. Methods : To evaluate protective effect of wild ginseng extract against t-BHP induced cytotoxicity, LDH level and activity of glutathione peroxidase and reductase were measured. Gene expression was also measured using DNA microarray. Results : Wild ginseng extract showed a significant protective effect against t-BHP-induced cytotoxicity in HepG2 cell line. It is not, however, related with the activities of glutathione peroxidase and glutathione reductase. Analysis of gene expression using DNA chip, demonstrated that 28 genes were up-regulated in t-BHP only group. Five genes - selenoprotein P, glutathione peroxidase 3, sirtuin 2, peroxiredoxin 2, serfiredoxin 1 homolog - may be related with the protective effect of wild ginseng extract. Conclusions : Based on the results, a protective effect of wild ginseng extract against t-BHP-induced oxidative damage in HepG2 cell line is not associated with the activities of glutathione peroxidase and glutathione reductase, but with the expression of selenoprotein P, glutathione peroxidase 3, sirtuin 2, peroxiredoxin 2, and serfiredoxin 1 homolog.