Browse > Article
http://dx.doi.org/10.1007/s10059-009-0074-3

Antioxidative Role of Selenoprotein W in Oxidant-Induced Mouse Embryonic Neuronal Cell Death  

Chung, Youn Wook (Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University)
Jeong, Daewon (Department of Microbiology and Aging-associated Disease Research Center, Yeungnam University College of Medicine)
Noh, Ok Jeong (Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University)
Park, Yong Hwan (Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University)
Kang, Soo Im (Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University)
Lee, Min Goo (Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University)
Lee, Tae-Hoon (School of Dentistry, Dental Science Research Institute, The 2nd Stage of Brain Korea 21 for the Dental School, Chonnam National University)
Yim, Moon Bin (Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health)
Kim, Ick Young (Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University)
Abstract
It has been reported that selenoprotein W (SelW) mRNA is highly expressed in the developing central nerve system of rats, and its expression is maintained until the early postnatal stage. We here found that SelW protein significantly increased in mouse brains of postnatal day 8 and 20 relative to embryonic day 15. This was accompanied by increased expression of SOD1 and SOD2. When the expression of SelW in primary cultured cells derived from embryonic cerebral cortex was knocked down with small interfering RNAs (siRNAs), SelW siRNA-transfected neuronal cells were more sensitive to the oxidative stress induced by treatment of $H_2O_2$ than control cells. TUNEL assays revealed that $H_2O_2$-induced apoptotic cell death occurred at a higher frequency in the siRNA-transfected cells than in the control cells. Taken together, our findings suggest that SelW plays an important role in protection of neurons from oxidative stress during neuronal development.
Keywords
antioxidant; neuronal cells; oxidative stress; selenium; selenoprotein W;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 9  (Related Records In Web of Science)
연도 인용수 순위
1 Berry, M.J., Banu, L., Chen, Y.Y., Mandel, S.J., Kieffer, J.D., Harney, J.W., and Larsen, P.R. (1991). Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3′ untranslated region. Nature 353, 273-276   DOI   ScienceOn
2 Brigelius-Flohe, R. (1999). Tissue-specific functions of individual glutathione peroxidases. Free Radic. Biol. Med. 27, 951-965   DOI   PUBMED   ScienceOn
3 Gu, Q.P., Sun, Y., Ream, L.W., and Whanger, P.D. (2000). Selenoprotein W accumulates primarily in primate skeletal muscle, heart, brain and tongue. Mol. Cell. Biochem. 204, 49-56   DOI   PUBMED
4 Hill, K.E., McCollum, G.W., Boeglin, M.E., and Burk, R.F. (1997). Thioredoxin reductase activity is decreased by selenium deficiency. Biochem. Biophys. Res. Commun. 234, 293-295   DOI   ScienceOn
5 Korotkov, K.V., Novoselov, S.V., Hatfield, D.L., and Gladyshev, V.N. (2002). Mammalian selenoprotein in which selenocysteine (Sec) incorporation is supported by a new form of Sec insertion sequence element. Mol. Cell. Biol. 22, 1402-1411   DOI   ScienceOn
6 Moon, I.S., Cho, S.J., Lee, H., Seog, D.H., Jung, Y.W., Jin, I., and Walikonis, R. (2008). Upregulation by KCl treatment of eukaryotic translation elongation factor 1A (eEF1A) mRNA in the dendrites of cultured rat hippocampal neurons. Mol. Cells 25, 538-544   PUBMED
7 Mustacich, D., and Powis, G. (2000). Thioredoxin reductase. Biochem. J. 346 Pt 1, 1-8   DOI
8 Niethammer, M., Smith, D.S., Ayala, R., Peng, J., Ko, J., Lee, M.S., Morabito, M., and Tsai, L.H. (2000). NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28, 697-711   DOI   ScienceOn
9 Pellmar, T.C. (1987). Peroxide alters neuronal excitability in the CA1 region of guinea-pig hippocampus in vitro. Neuroscience 23, 447-456   DOI   PUBMED   ScienceOn
10 Rice, M.E. (2000). Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci. 23, 209-216   DOI   PUBMED   ScienceOn
11 Schweizer, U., Brauer, A.U., Kohrle, J., Nitsch, R., and Savaskan, N.E. (2004). Selenium and brain function: a poorly recognized liaison. Brain Res. Brain Res. Rev. 45, 164-178   DOI   ScienceOn
12 Tujebajeva, R.M., Copeland, P.R., Xu, X.M., Carlson, B.A., Harney, J.W., Driscoll, D.M., Hatfield, D.L., and Berry, M.J. (2000). Decoding apparatus for eukaryotic selenocysteine insertion. EMBO Rep. 1, 158-163   DOI   ScienceOn
13 Yeh, J.Y., Gu, Q.P., Beilstein, M.A., Forsberg, N.E., and Whanger, P.D. (1997a). Selenium influences tissue levels of selenoprotein W in sheep. J. Nutr. 127, 394-402   DOI
14 Jeong, D., Kim, T.S., Chung, Y.W., Lee, B.J., and Kim, I.Y. (2002). Selenoprotein W is a glutathione-dependent antioxidant in vivo. FEBS Lett. 517, 225-228   DOI   PUBMED   ScienceOn
15 Dikiy, A., Novoselov, S.V., Fomenko, D.E., Sengupta, A., Carlson, B.A., Cerny, R.L., Ginalski, K., Grishin, N.V., Hatfield, D.L., and Gladyshev, V.N. (2007). SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry 46, 6871-6882   DOI   ScienceOn
16 Vendeland, S.C., Beilstein, M.A., Chen, C.L., Jensen, O.N., Barofsky, E., and Whanger, P.D. (1993). Purification and properties of selenoprotein W from rat muscle. J. Biol. Chem. 268, 17103-17107
17 Aachmann, F.L., Fomenko, D.E., Soragni, A., Gladyshev, V.N., and Dikiy, A. (2007). Structural analysis of selenoprotein W and NMR analysis of its interaction with 14-3-3 proteins. J. Biol. Chem. 282, 37036-37044   DOI   ScienceOn
18 Yeh, J.Y., Beilstein, M.A., Andrews, J.S., and Whanger, P.D. (1995). Tissue distribution and influence of selenium status on levels of selenoprotein W. FASEB J. 9, 392-396   DOI
19 Burk, R.F., and Hill, K.E. (2005). Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu. Rev. Nutr. 25, 215-235   DOI   ScienceOn
20 Gu, Q.P., Beilstein, M.A., Barofsky, E., Ream, W., and Whanger, P.D. (1999). Purification, characterization, and glutathione binding to selenoprotein W from monkey muscle. Arch. Biochem. Biophys. 361, 25-33   DOI   ScienceOn
21 Loflin, J., Lopez, N., Whanger, P.D., and Kioussi, C. (2006). Selenoprotein W during development and oxidative stress. J. Inorg. Biochem. 100, 1679-1684   DOI   ScienceOn
22 Petit, N., Lescure, A., Rederstorff, M., Krol, A., Moghadaszadeh, B., Wewer, U.M., and Guicheney, P. (2003). Selenoprotein N: an endoplasmic reticulum glycoprotein with an early developmental expression pattern. Hum. Mol. Genet. 12, 1045-1053   DOI   ScienceOn
23 Fagegaltier, D., Hubert, N., Yamada, K., Mizutani, T., Carbon, P., and Krol, A. (2000). Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation. EMBO J. 19, 4796-4805   DOI   ScienceOn
24 Ferreiro, A., Quijano-Roy, S., Pichereau, C., Moghadaszadeh, B., Goemans, N., Bonnemann, C., Jungbluth, H., Straub, V., Villa nova, M., Leroy, J.P., et al. (2002). Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am. J. Hum. Genet. 71, 739-749   DOI   ScienceOn
25 Grumolato, L., Ghzili, H., Montero-Hadjadje, M., Gasman, S., Lesage, J., Tanguy, Y., Galas, L., Ait-Ali, D., Leprince, J., Guerineau, N.C., et al. (2008). Selenoprotein T is a PACAP-regulated gene involved in intracellular $Ca^{2+}$ mobilization and neuroendocrine secretion. FASEB J. 22, 1756-1768   DOI   ScienceOn
26 Hubert, N., Walczak, R., Carbon, P., and Krol, A. (1996). A protein binds the selenocysteine insertion element in the 3′-UTR of mammalian selenoprotein mRNAs. Nucleic Acids Res. 24, 464-469   DOI   ScienceOn
27 Cone, J.E., Del Rio, R.M., Davis, J.N., and Stadtman, T.C. (1976). Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. Proc. Natl. Acad. Sci. USA 73, 2659-2663   DOI   ScienceOn
28 Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G., and Hoekstra, W.G. (1973). Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 588-590   DOI   ScienceOn
29 Jeong, D.W., Kim, E.H., Kim, T.S., Chung, Y.W., Kim, H., and Kim, I.Y. (2004). Different distributions of selenoprotein W and thioredoxin during postnatal brain development and embryogenesis. Mol. Cells 17, 156-159   PUBMED
30 Novoselov, S.V., Kryukov, G.V., Xu, X.M., Carlson, B.A., Hatfield, D.L., and Gladyshev, V.N. (2007). Selenoprotein H is a nucleolar thioredoxin-like protein with a unique expression pattern. J. Biol. Chem. 282, 11960-11968   DOI   ScienceOn
31 Lee, B.J., Worland, P.J., Davis, J.N., Stadtman, T.C., and Hatfield, D.L. (1989). Identification of a selenocysteyl-tRNA(Ser) in mammalian cells that recognizes the nonsense codon, UGA. J. Biol. Chem. 264, 9724-9727
32 Allan, C.B., Lacourciere, G.M., and Stadtman, T.C. (1999). Responsiveness of selenoproteins to dietary selenium. Annu. Rev. Nutr. 19, 1-16   DOI   ScienceOn
33 Cohen, G. (1994). Enzymatic/nonenzymatic sources of oxyradicals and regulation of antioxidant defenses. Ann. N Y Acad. Sci. 738, 8-14   PUBMED
34 Lovell, M.A., Xie, C., Gabbita, S.P., and Markesbery, W.R. (2000). Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer's disease brain. Free Radic. Biol. Med. 28, 418-427   DOI   ScienceOn
35 Moghadaszadeh, B., Petit, N., Jaillard, C., Brockington, M., Roy, S.Q., Merlini, L., Romero, N., Estournet, B., Desguerre, I., Chaigne, D.I et al. (2001). Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat. Genet. 29, 17-18   DOI   ScienceOn
36 Zinoni, F., Birkmann, A., Stadtman, T.C., and Bock, A. (1986). Nucleotide sequence and expression of the selenocysteinecontaining polypeptide of formate dehydrogenase (formatehydrogen- lyase-linked) from Escherichia coli. Proc. Natl. Acad. Sci. USA 83, 4650-4654   DOI   ScienceOn
37 Kim, H.Y., and Gladyshev, V.N. (2007). Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem. J. 407, 321-329   DOI   ScienceOn
38 Yeh, J.Y., Vendeland, S.C., Gu, Q., Butler, J.A., Ou, B.R., and Whanger, P.D. (1997b). Dietary selenium increases selenoprotein W levels in rat tissues. J. Nutr. 127, 2165-2172   DOI   PUBMED
39 Kryukov, G.V., Castellano, S., Novoselov, S.V., Lobanov, A.V., Zehtab, O., Guigo, R., and Gladyshev, V.N. (2003). Characterization of mammalian selenoproteomes. Science 300, 1439-1443   DOI   PUBMED   ScienceOn
40 Kumaraswamy, E., Korotkov, K.V., Diamond, A.M., Gladyshev, V.N., and Hatfield, D.L. (2002). Genetic and functional analysis of mammalian Sep15 selenoprotein. Methods Enzymol. 347, 187-197   DOI   PUBMED
41 Trepanier, G., Furling, D., Puymirat, J., and Mirault, M.E. (1996). Immunocytochemical localization of seleno-glutathione peroxidase in the adult mouse brain. Neuroscience 75, 231-243   DOI   ScienceOn
42 Beilstein, M.A., Vendeland, S.C., Barofsky, E., Jensen, O.N., and Whanger, P.D. (1996). Selenoprotein W of rat muscle binds glutathione and an unknown small molecular weight moiety. J. Inorg. Biochem. 61, 117-124   DOI   ScienceOn
43 Flohe, L., Gunzler, W.A., and Schock, H.H. (1973). Glutathione peroxidase: a selenoenzyme. FEBS Lett. 32, 132-134   DOI   ScienceOn