• Title/Summary/Keyword: selective scan

Search Result 72, Processing Time 0.028 seconds

Study on Tensile Properties of AlSi10Mg produced by Selective Laser Melting (SLM 공정 기법으로 제작한 AlSi10Mg 인장특성에 관한 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.25-31
    • /
    • 2018
  • Selective Laser Melting is one of the representative 3D printing techniques for handling metal materials. The main factors influencing the characteristics of structures fabricated by the SLM method include the build-up angle of structures, laser power, laser scan speed, and scan spacing. In this study, the tensile properties of AlSi10Mg alloys were investigated by considering the build-up angle of tensile test specimens, laser scanning speed and scan spacing as variables. The yield stress, tensile strength, and elongation were considered as tensile properties. From the test results, it was confirmed that the yield stress values were lowered in the order of 0, 45, and 90 based on the manufacturing direction of the tensile specimen. The maximum yield stress value was obtained at 1870 mm / min based on the laser scan speed. The yield stress size decreased with decreasing scan speed. Based on the laser scan spacing, as the value increases, the yield stress increases, but the variation is smaller than the other test criteria. The tendency of the tensile strength and elongation variation depending on the test conditions was difficult to understand.

Process Analysis of Melting Behaviors in Selective Laser Melting Process (선택적 레이저 용융 공정시 용융 거동에 대한 공정 분석)

  • Sung, M.Y.;Joo, B.D.;Kim, S.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.517-522
    • /
    • 2010
  • Selective laser melting (SLM) is emerged as a new manufacturing technique to directly fabricate precise parts using metallic materials. The final characteristics of a component fabricated through the SLM process are strongly dependent upon various parameters such as laser power, scan rate and pulse duration, etc. This paper, therefore, focuses on the dimensional characteristics of melted $20{\mu}m$ Fe-Cr-Ni powder by fiber laser for the selective laser melting process. With energy density decrease, the height and depth were decreased. Although the conditions are of the same energy density, the shape is different by laser power and scan rate. The shapes at various laser parameters were divided into 3 groups based on depth over height. The smooth regular shape is obtained under the conditions of $50{\mu}m$ of powder height and $15-20{\mu}s$ of pulse duration. And the laser power influenced the variation of shape more significantly than the scan rate.

The Study on the Dynamic False Contour of New Driving Method in AC PDP (AC-PDP의 새로운 구동방식에서 의사윤곽 저감을 위한 연구)

  • Hwang, Hyun-Tae;Kim, Jae-Sung;Kim, Gun-Su;Choi, Hoon-Young;Seo, Jeong-Hyun;Lee, Seok-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.258-260
    • /
    • 2003
  • In this paper, we study the reduction of the Dynamic False Contour in a new driving method. This method divides scan lines into Multi Blocks, and drives both selective write and selective erase address. Because of the characteristic of proposed waveform, each scan line has a different sustain pulse weight. Therefore, the Dynamic False Contour occurs seriously in the boundary of each Block. Finally, if scan-lines tie several lines, the Dynamic False Contour can reduce in the boundary of each Block.

  • PDF

Fabrication of Part and Its Evaluation Using Dual Laser in Solid Freeform Fabrication System (SFFS에서 듀얼 레이저를 이용한 부품 제작 및 평가)

  • Choi Jae-Won;Kim Dong-Soo;Doh Yang-Hoe;Lee Seok-Hee;Choi Kyung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.334-341
    • /
    • 2006
  • A solid freeform fabrication (SFF) system using selective laser sintering (SLS) is currently recognized as a leading process and the SLS extends the applications to machinery and automobiles due to various employing materials. In order to fabricate a large part with SFF system, dual laser approach has been introduced. Since the building room is divided into two regions, each scan path for dual laser system is generated based on the single laser scan path. Scan paths for each laser have to be synchronized and consider mechanical strength against fracture at the interfaced region. This paper will address generation of single laser scan path which deals with special cases for unnecessary scan points and generation of dual laser scan path according to various divided regions to enhance mechanical strength. To evaluate the developed scan path method, the specimen will be fabricated and evaluated.

A Genome-wide Scan for Selective Sweeps in Racing Horses

  • Moon, Sunjin;Lee, Jin Woo;Shin, Donghyun;Shin, Kwang-Yun;Kim, Jun;Choi, Ik-Young;Kim, Jaemin;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.11
    • /
    • pp.1525-1531
    • /
    • 2015
  • Using next-generation sequencing, we conducted a genome-wide scan of selective sweeps associated with selection toward genetic improvement in Thoroughbreds. We investigated potential phenotypic consequence of putative candidate loci by candidate gene association mapping for the finishing time in 240 Thoroughbred horses. We found a significant association with the trait for Ral GApase alpha 2 (RALGAP2) that regulates a variety of cellular processes of signal trafficking. Neighboring genes around RALGAP2 included insulinoma-associated 1 (INSM1), pallid (PLDN), and Ras and Rab interactor 2 (RIN2) genes have similar roles in signal trafficking, suggesting that a co-evolving gene cluster located on the chromosome 22 is under strong artificial selection in racehorses.

Effect of Process Parameters on Forming Characteristics of Selective Laser Sintered Fe-Ni-Cr Powder (Fe-Ni-Cr 분말의 선택적 레이저 소결 적층시 공정변수에 따른 조형특성)

  • Joo, B.D.;Jang, J.H.;Yim, H.S.;Son, Y.M.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.262-267
    • /
    • 2009
  • Selective laser sintering is a kind of rapid prototyping process whereby a three-dimensional part is built layer wise by laser scanning the powder. This process is highly influenced by powder and laser parameters such as laser power, scan rate, fill spacing and layer thickness. Therefore a study on fabricating Fe-Ni-Cr powder by selective laser sintering has been performed. In this study, fabrication was performed by experimental facilities consisting of a 200W fiber laser which can be focused to 0.08mm and atmospheric chamber which can control atmospheric pressure with argon. With power increase or energy density decrease, line width was decreased and line surface quality was improved with energy density increase. Surface quality of quadrangle structure was improved with fill spacing optimization.

A study on the core technologies for industrial type digital 3D SFF system

  • Kim, Dong-Soo;An, Young-Jin;Kim, Sung-Jon;Choi, Byung-Oh;Lim, Hyun-Eui
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2170-2174
    • /
    • 2005
  • Selective Laser Sintering (SLS) is a useful rapid prototyping technique for the manufacture of three dimensional (3D) solid objects directly from a scanning data. A new approach called a Selective Multi-Laser Sintering (SMLS) system has been developed at Korea Institute Machinery & Materials (KIMM) as an industrial type SFFS. This SMLS machine is built with a frame, heaters, nitrogen supply part, laser system. This system uses the dual laser and 3D scanner made in $Solutionix^{TM}$ to improve the precision and speed for large objects. The three-dimensional solid objects are made of polyamide powder. The investigation on each part of SMLS system is performed to determine the proper theirs design and the effect of experimental parameters on making the 3D objects. The temperature of the system has a great influence on sintering the polymer. Because the stability of the powder temperature prevents the deformation of each layer, the controls of the temperature in both the system and the powders are very important during the process. Therefore, we simulated the temperature distribution of build room using the temperature analysis with ANSYS program. Selected radiant heater is used to raise temperature of powder to melting point temperature. The laser parameters such as scan spacing, scan speed, laser power and laser delay time affect the production the 3D objects too. The combination of the slow scan speed and the high laser power shows the good results without the layer curling. The work is under way to evaluate the effect of experimental parameters on process and to produce the various objects. We are going to experiment continuously to improve the size accuracy and surface roughness.

  • PDF

Microstructures and Characterization of Al-Si-Mg Alloy Processed by Selective Laser Melting with Post-Heat-treatment (선택적 레이저 용융공정으로 제조된 Al-Si-Mg 합금의 열처리에 따른 미세조직 및 특성평가)

  • Lee, Gi Seung;Eom, Yeong Seong;Kim, Kyung Tae;Kim, Byoung Kee;Yu, Ji Hun
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.138-145
    • /
    • 2019
  • In this study, Al-Si-Mg alloys are additively manufactured using a selective laser melting (SLM) process from AlSi10Mg powders prepared from a gas-atomization process. The processing parameters such as laser scan speed and laser power are investigated for 3D printing of Al-Si-Mg alloys. The laser scan speeds vary from 100 to 2000 mm/s at the laser power of 180 and 270 W, respectively, to achieve optimized densification of the Al-Si-Mg alloy. It is observed that the relative density of the Al-Si-Mg alloy reaches a peak value of 99% at 1600 mm/s for 180 W and at 2000 mm/s for 270W. The surface morphologies of the both Al-Si-Mg alloy samples at these conditions show significantly reduced porosities compared to those of other samples. The increase in hardness of as-built Al-Si-Mg alloy with increasing scan speed and laser power is analyzed due to high relative density. Furthermore, it was found that cooling conditions after the heat-treatment for homogenization results in the change of dispersion status of Si phases in the Al-Si matrix but also affects tensile behaviors of Al-Si-Mg alloys. These results indicate that combination between SLM processing parameters and post-heat treatment should be considered a key factor to achieve optimized Al-Si alloy performance.

Efficient Test Data Compression Method (효율적인 테스트 데이터 압축 방법)

  • Jung, Jun-Mo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.690-692
    • /
    • 2012
  • This pape presents the efficient test data compression method considering test power dissipation in scan test of IP core. There are many researches about test data compression using scan slice selective encoding except power dissipation. We present the new algorithm that assigns the don't care value to be a minimal hamming distance between adjacent slices. Experimental results show that the power dissipation is reduced.

  • PDF

New Selective Reset Waveform for a Large-Sustain-Gap Structure in AC PDPs (AC PDP의 장방전 구조의 구동을 위한 새로운 셀렉티브 리셋파형)

  • Song, Tae-Yong;Kim, Dong-Hun;Kim, Won-Jae;Lee, Seok-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1391-1392
    • /
    • 2007
  • A selective reset waveform which can improve the dark room contrast ratio in a large sustain gap structure is suggested in this paper. When conventional selective reset discharge is performed, frequent unexpected misfiring happens because of high Vxb and much quantity of negative wall charge formed on Y electrode during final sustain period. The misfiring between sustain electrode and address electrode can be removed by lowering Vxb value and the misfiring between address electrode and scan electrode can be prevented by applying last sustain pulse of 40us and rectangular pulse of Vscan on Y electrode. When the selective reset waveform has one time reset per 8 subfields, black luminance of 1.55 cd/m2 can be obtained without any misfiring.

  • PDF