• Title/Summary/Keyword: selective etching

Search Result 153, Processing Time 0.03 seconds

Improved Contact Characteristics in a Single Tin-Oxide Nanowire Device by a Selective Reactive Ion Etching (RIE) Process (선택 건식에칭에 의한 단일 산화주석 나노와이어 소자의 접촉 특성 개선)

  • Lee, Jun-Min;Kim, Dae-Il;Ha, Jeong-Sook;Kim, Gyu-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.130-133
    • /
    • 2010
  • Although many structures based on $SnO_2$ nanowires have been demonstrated, there is a limitation towards practical application due to the unwanted contact potential between the metal electrode and the $SnO_2$ nanowire. This is mostly due to the presence of the native oxide layer that acts as an insulator between the metal contact and the nanowire. In this study the contact properties between Ti/Au contacts and a single $SnO_2$ nanowire was compared to the electrical properties of a contact without the oxide layer. RIE(Reactive Ion Etching) is used to selectively remove the oxide layer from the contact area. The $SnO_2$ nanowires were synthesized by chemical vapor deposition (CVD) and dispersed on a $Si/Si_3N_4$ substrate. The Ti/Au (20nm/100nm) electrodes were formed bye-beam lithography, e-beam evaporation and a lift-off process.

Laser Direct Patterning of Photoresist Layer for Halftone Dots of Gravure Printing Roll (그라비아 인쇄물의 망점 형성을 위한 포토레지스터 코팅층의 레이저 직접 페터닝)

  • Seo, Jung;Lee, Je-Hoon;Han, Yu-Hee
    • Laser Solutions
    • /
    • v.3 no.2
    • /
    • pp.35-43
    • /
    • 2000
  • Laser direct patterning of the coated photoresit (PMER-NSG31B) layer was studied to make halftone dots on gravure printing roll. The selective laser hardening of photoresist by Ar-ion laser(wavelength : 333.6nm∼363.8nm) was controlled by the A/O modulator. The coating thickness in the range of 5㎛∼11㎛ could be obtained by using the up-down directional moving device along the vertically located roll. The width, thickness and hardness of the hardened lines formed under laser power of 200∼260㎽ and irradiation time of 4.4∼6.6$\mu$ sec/point were investigated after developing. The hardened width increased according to the increase of coating thickness. Though the hardened thickness was changed due to the effect of the developing solution, the hardened layer showed good resistance to the scratching of 2H pencil. Also, the hardened minimum line widths of 10㎛ could be obtained. The change of line width was also found after etching, and the minimum line widths of 6㎛ could be obtained. The hardened lines showed the good resistance to the etching solution. Finally, the experimental data could be applied to make gravure halftone dots using the developed imaging process, successfully.

  • PDF

Gravure Halftone Dots by Laser Direct Patterning

  • Jeong Suh;Lee, Jae-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.26-32
    • /
    • 2002
  • Laser direct patterning of the coated photoresist (PMER-NSG31B) layer was studied to make halftone dots on the gravure printing roll. The selective laser hardening of the photoresist by Ar-ion laser(wavelength: 333.6∼363.8 nm) was controlled by the A/O modulator. The coating thickness in the range of 5∼11㎛ could be obtained by using the up-down directional moving device along the vertically located roll. The width, thickness and hardness of the hardened lines farmed under the laser power of 200∼260mW and irradiation time of 4.4∼6.6 $\mu$ sec/point were investigated after developing. The hardened width increased as the coating thickness increased. Though the hardened thickness was changed due to the effect of the developing solution, the hardened layer showed good resistance to the scratching of 2H pencil. Also, the hardened minimum line width of 10㎛ could be obtained. The change of line width was also found after etching, and the minimum line widths of 6㎛ could be obtained. The hardened lines showed the good resistance to the etching solution. Finally, the experimental data could be applied to make gravure halftone dots using the developed imaging process, successfully.

QMF Ion Beam System Development for Oxide Etching Mechanism Study (산화막 식각 기구 연구를 위한 QMF Ion Beam 장치의 제작)

  • 주정훈
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.4
    • /
    • pp.220-225
    • /
    • 2004
  • A new ion beam extraction system is designed using a simple ion mass filter and a micro mass balance and a QMS based detecting system. A quadrupole Mass Filter is used for selective ion beam formation from inductively coupled high density plasma sources with appropriate electrostatic lens and final analyzing QMS. Also a quartz crystal microbalance is set between a QMF and a QMS to measure the etching and polymerization rate of the mass selected ion beam. An inductively coupled plasma was used as a ion/radical source which had an electron temperature of 4-8 eV and electron density of $4${\times}$10^{11}$#/㎤. A computer interfaced system through 12bit AD-DA board can control the pass ion mass of the qmf by setting RF/DC voltage ratio applied to the quadrupoles so that time modulation of pass ion's mass is possible. So the direct measurements of ion - surface chemistry can be possible in a resolution of $1\AA$/sec based on the qcm's sensitivity. A full set of driving software and hardware setting is successfully carried out to get fundamental plasma information of the ICP source and analysed $Ar^{+}$ beam was detected at the $2^{nd}$ QMS.

Fabrication of Metal Nanobridge Arrays using Sacrificial Silicon Nanowire

  • Lee, Kook-Nyung;Lee, Kyoung-Gun;Jung, Suk-Won;Lee, Min-Ho;Seong, Woo-Kyeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.396-400
    • /
    • 2012
  • Novel fabrication method of nanobridge array of various materials was proposed using suspended silicon nanowire array as a sacrificial template structure. Nanobridges of various materials can be simply fabricated by direct deposition with thermal evaporation on the top of prefabricated suspended silicon nanobridge arrays, which are used as a sacrificial structure. Since silicon nanowire can be easily removed by selective dry etching, nanobridge arrays of an intended material are finally obtained. In this paper, metal nanobridges of Ti/Au, around 50-200 nm in thickness and width, 5-20 ${\mu}m$ in length were fabricated to prove the advantages of the proposed nanowire or nanobridge fabrication method. The nanobridges of Ti/Au after complete removal of sacrificial silicon nanowire template were well-established and bending of nanobridge caused by the tensile stress was observed after silicon removing. Up to 50 nm and 10 ${\mu}m$ of silicon nanowire in diameter and length respectively was also very useful for nanowire templates.

CMP (Chemical Mechanical Polishing) characteristics of langasite single crystals for SAW filter applications

  • Jang, Min-Chul;An, Jin-Ho;Kim, Jong-Cheol;Auh, Keun-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.4
    • /
    • pp.309-317
    • /
    • 2000
  • Langasite is a promising new piezoelectric material for SAW filter application. Little was known until recently about the methods needed to mechanically polish and chemically polish/etch this material. In this experiment, polishing, slurry chemistry and chemical wet etching for langasite is described. Conventional quartz and LN ($LiNbO_3$) polishing methods did not produce satisfactory polished surfaces, and polishing with a colloidal silica slurries has shown to be most effective. The optimum condition was investigated by changing the slurry chemistry. As the planarization effect is very important in SAW filter applications, the examination of the effective particle number effect and the particle size effect was carried out. Z-cut langasite surface which had been polished with the colloidal silica slurries was etched in a variety of etchants. Conventional quartz etchants destroyed the polished surface. Other etchants formed a thin film on the surfaces. In this experiment, the reaction between langasite and a few etching solution was analysed. And an appropriate selective etchant solution for analyzing the defects was synthesized.

  • PDF

Optimization of Porous Silicon Reflectance for Multicrystalline Silicon Solar Cells (다공성 실리콘 반사방지막의 최적 반사율을 적용한 다결정 실리콘 태양전지)

  • Kwon, J.H.;Kim, D.S.;Lee, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.146-149
    • /
    • 2004
  • Porous silicon(PS) as an excellent light diffuser can be used as an antireflection layer without other antireflection coating(ARC) materials. PS layers were obtained by electrochemical etching(ECE) anodization of silicon wafers in hydrofluoric acid/ethanol/de-ionized(DI) water solution($HF/EtOH/H_2O$). This technique is based on the selective removal of Si atoms from the sample surface forming a layer of PS with adjustable optical, electrical, and mechanical properties. A PS layer with optimal ARC characteristics was obtained in charge density (Q) of 5.2 $C/cm^2$. The weighted reflectance is reduced from 33 % to 4 % in the wavelength between 400 and 1000 nm. The weighted reflectance with optimized PS layers is much less than that obtained with a commercial SiNx ARC on a potassium hydroxide(KOH) pre-textured multi-crystalline silicon(mc-Si) surface.

  • PDF

Study of Selective Etching of GaAs-based Semiconductors using High Density Planar Inductively Coupled $BCl_3/CF_4$ Plasmas (고밀도 평판형 유도결합 $BCl_3/CF_4$ 플라즈마에 의한 GaAs 계열반도체의 선택적 식각에 관한 연구)

  • Choi, Chung-Ki;Park, Min-Young;Jang, Soo-Ouk;Yoo, Seung-Ryul;Lee, Je-Won;Song, Han-Jung;Jeon, Min-Hyon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.46-47
    • /
    • 2005
  • 이번 연구는 $BCl_3/CF_4$ 플라즈마를 사용하여 반도체소자 제조 시 널리 이용되는 GaAs 계열반도체 중 대표적인 재료인 GaAs/AlGaAs 및 GaAs/InGaP 구조를 선택적으로 건식 식각한 후 분석한 것이다. 공정변수로는 ICP 소스파워를 0-500W, RIE 파워를 0-50W 그리고 $BCl_3/CF_4$ 가스 혼합비를 중점적으로 변화시켰다. $BCl_3$ 플라즈마만을 사용한 경우 (20$BCl_3$, 20W RIE power, 300W ICP source power, 7.5mTorr) 는 GaAs:AlGaAs의 선택비가 0.5:1 이었으며 이때 GaAs의 식각률은 ~2200${\AA}/min$ 이었으며 AlGaAs의 식각률은 ~4500${\AA}/min$ 이었다. 식각 후 표면의 RMS roughness은 < 2nm로 깨끗한 결과를 보여주었다. 15% $CF_4$ 가스가 혼합된 $17BCl_3/3CF_4$, 20W RIE power, 300W ICP source power, 7.5mTorr의 조건에서 3분 동안 공정한 결과 순수한 $BCl_3$ 플라즈마만을 사용한 경우보다 표면은 다소 거칠었지만 (RMS roughness: ~8.4) GaAs의 식각률 (~980nm/min)과 AlGaAs와 InGaP에 대한 GaAs의 선택도 (GaAs:AlGaAs=16:1, GaAs:InGaP=38:1)는 크게 증가하였다. 그리고 AlGaAs 및 InGaP의 경우 식각 시 나타난 휘발성이 낮은 식각 부산물 ($AlF_3:1300^{\circ}C$, $InF_3:1200^{\circ}C$)로 인하여 50nm/min 이하의 낮은 식각률을 보였고, 62.5%의 $CF_4$가 혼합된 $7.5BCl_3/12.5CF_4$플라즈마의 조건에서는 AlGaAs 및 InGaP에 대한 GaAs의 선택도가 각각 280:1, 250:1을 나타내었다.

  • PDF

Silicon Surface Micro-machining by Anhydrous HF Gas-phase Etching with Methanol (무수 불화수소와 메탄올의 기상식각에 의한 실리콘 표면 미세 가공)

  • Jang, W.I.;Choi, C.A.;Lee, C.S.;Hong, Y.S.;Lee, J.H.;Baek, J.T.;Kim, B.W.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.73-82
    • /
    • 1998
  • In silicon surface micro-machining, the newly developed GPE(gas-phase etching) process was verified as a very effective method for the release of highly compliant micro-structures. The developed GPE system with anhydrous HF gas and $CH_{3}OH$ vapor was characterized and the selective etching properties of sacrificial layers to release silicon micro-structures were discussed. P-doped polysilicon and SOI(silicon on insulator) substrate were used as a structural layer and TEOS(tetraethyorthdsilicate) oxide, thermal oxide and LTO(low temperature oxide) as a sacrificial layer. Compared with conventional wet-release, we successfully fabricated micro-structures with virtually no process-induced striction and residual product.

  • PDF

Selective Dry Etching of GaAs/AlGaAs Layer for HEMT Device Fabrication (HEMT 소자 제작을 위한 GaAs/AlGaAs층의 선택적 건식식각)

  • 김흥락;서영석;양성주;박성호;김범만;강봉구;우종천
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.11
    • /
    • pp.902-909
    • /
    • 1991
  • A reproducible selective dry etch process of GaAs/AlGaAs Heterostructures for High Electron Mobility Transistor(HEMT) Device fabrication is developed. Using RIE mode with $CCl_{2}F_{2}$ as the basic process gas, the observed etch selectivity of GaAs layer with respect to GaAs/$Al_{0.3}Ga_{0.7}$As is about 610:1. Severe polymer deposition problem, parialy generated from the use of $CCl_{2}F_{2}$ gas only, has been significantly reduced by adding a small amount of He gas or by $O_{2}$ plasma ashing after etch process. In order to obtain an optimized etch process for HEMT device fabrication, we com pared the properties of the wet etched Schottky contact with those of the dry etched one, and set dry etch condition to approach the characteristics of Schottky diode on wet etched surface. By applying the optimized etch process, the fabricated HEMT devices have the maximum transconductance $g_{mext}$ of 224 mS/mm, and have relatively uniform distribution across the 2inch wafer in the value of 200$\pm$20mS/mm.

  • PDF