• Title/Summary/Keyword: selective doping

Search Result 61, Processing Time 0.029 seconds

Selective Emitter Formation of Borosilicate-Glass (BSG) Layer using UV Laser (UV Laser를 이용한 Borosilicate-Glass (BSG)층의 선택적 에미터 형성)

  • Kim, Ga Min;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.727-731
    • /
    • 2021
  • In this study, we have investigated a selective emitter using a UV laser on BBr3 diffusion doping layer. The selective emitter has two regions of high and low doping concentration alternatively and this structure can remove the disadvantages of homogeneous emitter doping. The selective emitters were fabricated by using UV laser of 355 nm on the homogeneous emitters which were formed on n-type Si by BBr3 diffusion in the furnace and the heavy boron doping regions were formed on the laser regions. In the optimized laser doping process, we are able to achieve a highly concentrated emitter with a surface resistance of up to 43 Ω/□ from 105 ± 6 Ω/□ borosilicate glass (BSG) layer on Si. In order to compare the characteristics and confirm the passivation effect, the annealing is performed after Al2O3 deposition using an ALD. After the annealing, the selective emitter shows a better effect than the high concentration doped emitter and a level equivalent to that of the low concentration doped emitter.

Effects of Laser Doping on Selective Emitter Si Solar Cells (레이져를 이용한 도핑 특성과 선택적 도핑 에미터 실리콘 태양전지의 제작)

  • Park, Sungeun;Park, Hyomin;Nam, Junggyu;Yang, JungYup;Lee, Dongho;Min, Byoung Koun;Kim, Kyung Nam;Park, Se Jin;Lee, Hae-Seok;Kim, Donghwan;Kang, Yoonmook;Kim, Dongseop
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.54-58
    • /
    • 2016
  • Laser-doped selective emitter process requires dopant source deposition, spin-on-glass, and is able to form selective emitter through SiNx layer by laser irradiation on desired locations. However, after laser doping process, the remaining dopant layer needs to be washed out. Laser-induced melting of pre-deposited impurity doping is a precise selective doping method minimizing addition of process steps. In this study, we introduce a novel scheme for fabricating highly efficient selective emitter solar cell by laser doping. During this process, laser induced damage induces front contact destabilization due to the hindrance of silver nucleation even though laser doping has a potential of commercialization with simple process concept. When the laser induced damage is effectively removed using solution etch back process, the disadvantage of laser doping was effectively removed. The devices fabricated using laser doping scheme power conversion efficiency was significantly improved about 1% abs. after removal the laser damages.

High Rs 최적화에 따른 selective emitter solar cell의 특성변화에 관한 연구

  • An, Si-Hyeon;Park, Cheol-Min;Jo, Jae-Hyeon;Jang, Gyeong-Su;Baek, Gyeong-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.393-393
    • /
    • 2011
  • 오늘 날 태양전지 산업에서 가장 많은 생산을 하고 있는 분야는 결정질 태양전지분야이다. 현재는 이러한 시대적 요구에 따라 많은 연구가 진행되고 있는데 특히 junction을 이루는 n layer의 doping profile을 선택적으로 형성하여 개방전압 및 단락전류를 향상시키는 연구가 활발히 진행되고 있다. 본 연구는 이러한 n type layer의 doping profile을 선택적으로 형성하는 selective emitter solar cell에 관한 연구로써 SILVACO simulation을 이용하여 low Rs 영역은 고정하고 high Rs 영역의 doping depth를 가변 함으로써 high Rs 영역을 달리 형성하는 방법으로 selective emitter solar cell의 high Rs영역의 최적화에 관한 전산모사를 실시하였다. 각각의 가변조건에 따라 quantum efficiency를 통한 광학적 분석과 I-V를 통한 전기적 분석을 하여 high Rs영역을 최적화 하였다.

  • PDF

A Study on Feasibility of the Phosphoric Paste Doping for Solar Cell using Newly Atmospheric Pressure Plasma Source (새로운 대기압 플라즈마 소스를 이용한 결정질 실리콘 태양전지 인(P) 페이스트 도핑에 관한 연구)

  • Cho, I-Hyun;Yun, Myoung-Soo;Jo, Tae-Hoon;Rho, Junh-Young;Jeon, BuII;Kim, In-Tae;Choi, Eun-Ha;Cho, Guang-Sup;Kwon, Gi-Chung
    • New & Renewable Energy
    • /
    • v.9 no.2
    • /
    • pp.23-29
    • /
    • 2013
  • Furnace and laser is currently the most important doping process. However furnace is typically difficult appling for selective emitters. Laser requires an expensive equipment and induces a structural damage due to high temperature using laser. This study has developed a new atmospheric pressure plasma source and research atmospheric pressure plasma doping. Atmospheric pressure plasma source injected Ar gas is applied a low frequency (a few 10 kHz) and discharged the plasma. We used P type silicon wafers of solar cell. We set the doping parameter that plasma treatment time was 6s and 30s, and the current of making the plasma is 70 mA and 120 mA. As result of experiment, prolonged plasma process time and highly plasma current occur deeper doping depth and improve sheet resistance. We investigated doping profile of phosphorus paste by SIMS (Secondary Ion Mass Spectroscopy) and obtained the sheet resistance using generally formula. Additionally, grasped the wafer surface image with SEM (Scanning Electron Microscopy) to investigate surface damage of doped wafer. Therefore we confirm the possibility making the selective emitter of solar cell applied atmospheric pressure plasma doping with phosphorus paste.

Selective Emitter Solar Cell의 표면 Doping 농도에 따른 광학적, 전기적 특성에 관한 연구

  • An, Si-Hyeon;Jang, Gyeong-Su;Park, Hyeong-Sik;Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.308-308
    • /
    • 2010
  • 산업의 기반이 되는 화석연료의 고갈과 화석연료의 사용으로 야기되는 환경오염 문제로 인하여 새로운 에너지원의 개발이 요구되고 있다. 이러한 시대적 요구에 부흥하고자 신재생 에너지원에 관한 많은 연구가 진행되고 있으며, 그중에 태양전지가 가장 주목받고 있다. 그러나 태양전지는 기존 전력 생산 방법에 비해 경제성이 낮아 이를 극복하기 위한 다양한 연구가 진행되고 있다. 특히 결정질 태양전지에 관한 연구가 가장 활발한데 경제성과 변환효율을 향상시키기 위해 태양전지의 전면에 선택적 doping 형성법이 사용되고 있는데, 선택적 doping 구조의 태양전지는 기존의 태양전지보다 변환효율이 높으면서 양산에서 사용 가능한 구조이기 때문에 경제적 측면에서 더 유리한 구조라 할 수 있다. 하지만 선택적 doping 형성을 위한 실험적인 분석 방법에는 많은 시간과 노력이 필요하며 많은 시행착오를 겪어야 한다. 따라서 이러한 시간과 노력을 줄이고 실험을 하기 이전에 결과를 예측하여 실험의 방향을 제시하고자 TCAD simulation을 이용하여 결정질 태양전지의 전면에 형성한 선택적 doping 농도에 따른 pn 접합 형성 구조와 doping profile에 따른 전기적, 광학적 특성을 예측하고 효과적인 특성을 가질 수 있는 구조를 제시하고자 한다. 선택적 doping의 효과를 확인하기 위해 SR로 각 파장별 양자효율의 변화와 전기적 특성을 분석하여 selective emitter 태양전지에 적합한 pn 접합 형성구조를 제시하고자 한다.

  • PDF

Study of Ni/Cu Front Metal Contact Applying Selective Emitter Silicon Solar Cells (선택도핑을 적용한 Ni/Cu 전면 전극 실리콘 태양전지에 관한 연구)

  • Lee, JaeDoo;Kwon, Hyukyong;Lee, SooHong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.905-909
    • /
    • 2011
  • The formation of front metal contact silicon solar cells is required for low cost, low contact resistance to silicon surfaces. One of the available front metal contacts is Ni/Cu plating, which can be mass produced via asimple and inexpensive process. A selective emitter, meanwhile, involves two different doping levels, with higher doping (${\leq}30{\Omega}/sq$) underneath the grid to achieve good ohmic contact and low doping between the grid in order to minimize the heavy doping effect in the emitter. This study describes the formation of a selective emitter and a nickel silicide seed layer for the front metallization of silicon cells. The contacts were thickened by a plated Ni/Cu two-step metallization process on front contacts. The experimental results showed that the Ni layer via SEM (Scanning Electron Microscopy) and EDX (Energy dispersive X-ray spectroscopy) analyses. Finally, a plated Ni/Cu contact solar cell displayed efficiency of 18.10% on a $2{\times}2cm^2$, Cz wafer.

Analysis of Selective Emitter Properties Apply for Low Cost Metallization in Crystalline Silicon Solar Cells (결정질 실리콘 태양전지의 저가형 금속전극에 적용되기 위한 Selective emitter 특성 분석)

  • Kim, Min-Jeong;Lee, Ji-Hun;Cho, Kyeong-Yeon;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.454-455
    • /
    • 2009
  • Selective emitter structure have an important research subject for crystalline silicon solar cells because it is used in production for high efficiency solar cells. A selective emitter structure with highly doped regions underneath the metal contacts is widely known to be one of the most promising high-efficiency solution in solar cell processing. Since most of the selective emitter processes require expensive extra masking and double steps process. Formation of selective emitters is not cost effective. One method that satisfies these requirements is the method of screen-printing with a phosphorus doping paste. In this paper we researched two groups of selective emitter structure process. One was using dopant paste, and the other was using solid source, in order to compare their uniformity, sheet resistance and performance condition time.

  • PDF

Simulation을 이용한 N-type Si 태양전지의 p+ Boron Emitter 특성분석

  • Kim, Eun-Yeong;Yun, Seong-Yeon;Kim, Jeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.44.1-44.1
    • /
    • 2011
  • 본 연구에서는 태양전지 설계를 위해 기존의 반도체소자 simulation에 사용되고 있는 Silvaco TCAD tool을 사용하여 p+ boron emitter의 특성분석 실험을 하였다. 변수로는 emitter의 농도와 접촉저항 이 두 가지 놓고 표면 재결합과 의 영향을 염두에 두고 실험을 하였다. 농도는 $1{\times}10^{17}\;cm^{-3}$에서 $2{\times}10^{22}\;cm^{-3}$까지 두었고, 각각의 농도에 해당되는 contact 저항을 설정하여 전기적 특성을 보았다. 실험 결과 두 가지 변수를 모두 입력하였을 때 처음에 Isc가 조금씩 올라가다가 $1{\times}10^8\;cm^{-3}$에서 가장 높았고 그 이후에는 표면 재결합이 커지면서 Isc가 계속 떨어졌다. 하지만 contact 저항으로 인해 가장 높은 효율은 $1{\times}10^9\;cm^{-3}$ 부근에서 보였다. 농도에 따라 표면 재결합과 contact 저항이 서로 반대로 변하기 때문에 emitter를 표면 재결합이 늘어남에도 불구하고 contact 저항으로 인해 비교적 고농도로 doping 해야만 했다. 하지만 우리가 준 contact 저항은 농도에 따라 생긴 저항으로 실제 전극의 contact 저항은 훨씬 더 클 것으로 예상되고 이로 인해 더 고농도의 doping이 필요하게 된다. 그렇게 된다면 표면의 재결합으로 인한 손실은 더 크게 되어 전체적으로 효율은 떨어진다. 우리는 이 손실을 보완하고 줄이기 위해 selective emitter 개념을 넣어 이에 대한 영향은 보았다. selective를 하지 않은 $1{\times}10^{19}\;cm^{-3}$의 doping 농도의 가장 높은 효율을 보인 기존의 emitter와 전극 부분을 제외한 표면은 $1{\times}10^{18}\;cm^{-3}$으로 하고 전극 부분의 emitter는 $2{\times}10^{20}\;cm^{-3}$으로 한 selective emitter를 비교해보았다. 이는 selective emitter가 기존 emitter에 비해 Isc와 Fill Factor로 인해 효율이 약 0.7% 정도 높았다.

  • PDF

Research of Heavily Selective Emitter Doping for Making Solar Cell by Using the New Atmospheric Plasma Jet (새로운 대기압 플라즈마 제트를 이용한 태양전지용 고농도 선택적 도핑에 관한 연구)

  • Cho, I Hyun;Yun, Myung Soo;Son, Chan Hee;Jo, Tae Hoon;Kim, Dong Hea;Seo, Il Won;Rho, Jun Hyoung;Jeon, Bu Il;Kim, In Tae;Choi, Eun Ha;Cho, Guangsup;Kwon, Gi Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.238-244
    • /
    • 2013
  • Doping process using laser is an important process in fabrication of solar cell for heat treatment. However, the process of using the furnace is difficult to form a selective emitter doping region. The case of using a selective emitter laser doping is required an expensive laser equipment and induce the wafer's structure damage due to high temperature. This study, we fabricated a new costly plasma source. Through this, we research the selective emitter doping. We fabricated that the atmospheric pressure plasma jet injected Ar gas is inputted a low frequency (a few tens kHz). We used shallow doping wafers existing PSG (Phosphorus Silicate Glass) on the shallow doping CZ P-type wafer. Atmospheric plasma treatment time was 15 s and 30 s, and current for making the plasma is 40 mA and 70 mA. We investigated a doping profile by using SIMS (Secondary Ion Mass Spectroscopy) and we grasp the sheet resistance of electrical character by using doping profile. As result of experiment, prolonged doping process time and highly plasma current occur a deeper doping depth, moreover improve sheet resistance. We grasped the wafer's surface damage after atmospheric pressure plasma doping by using SEM (Scanning Electron Microscopy). We check that wafer's surface is not changed after plasma doping and atmospheric pressure doping width is broaden by increase of plasma treatment time and current.

Selective Enhancement of the Sheet Resistance of Graphene Using Dielectrophoresis (유전영동 현상을 이용한 그래핀 면저항의 선택적 향상 연구)

  • Oh, Sooyeoun;Kim, Jihyun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.253-257
    • /
    • 2017
  • Graphene is a monolayer carbon material which consists of $sp^2$ bonding between carbon atoms. Its excellent intrinsic properties allow graphene to be used in various research fields. Many researchers believe that graphene is suitable for electronic device materials due to its high electrical conductivity and carrier mobility. Through chemical doping, n- or p-type graphene can be obtained, and consequently graphene-based devices which have more comparable structure to common semiconductor-based devices can be fabricated. In our research, we introduced the dielectrophoresis process to the chemical doping step in order to improve the effect of chemical doping of graphene selectively. Under 10 kHz and $5V_{pp}$ (peak-to-peak voltage), doping was conducted and the Au nanoparticles were effectively formed, as well as aligned along the edges of graphene. Effects of the selective chemical doping on graphene were investigated through Raman spectroscopy and the change of its electrical properties were explored. We proposed the method to enhance the doping effect in local region of a graphene layer.