• Title/Summary/Keyword: sejong corpus

Search Result 54, Processing Time 0.02 seconds

Improving Part-of-speech Tagger by using Sejong Corpus (세종 계획 말뭉치를 이용한 품사 태거의 성능 개선)

  • Kim, Hyung-Joon;Lim, Dong-Hee;Kang, Seung-Shik;Eun, Ji-Hyun;Chang, Du-Seong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.177-180
    • /
    • 2007
  • 품사 태거를 구축할 때 어휘사전 증축이나 변환을 통해 성능 개선을 시도하지만 적당한 품사 태깅 코퍼스의 부재와 태그셋 불일치로 인한 변환 과정에 어려움을 겪고 있다. 본 논문에서는 세종 말뭉치 품사 태깅 코퍼스를 이용하여 품사 태깅용 어휘사전을 증축하고 품사 태거에 적용하여 성능을 개선하는 과정을 기술하였다. 품사 태거의 성능을 개선하기 위하여 세종 코퍼스를 태거의 태그셋에 적합하게 변환하고, 변환된 코퍼스에서 추출된 통계 정보를 품사 태거에서 활용하였다. 세종 코퍼스를 이용하여 품사 태거를 위한 어휘사전을 보강함으로써 품사 태거의 성능을 향상시킬 수 있었다.

  • PDF

Unicode and Code Conversion for Sejong 21 Raw Corpus (21세기 세종계획 원시 말뭉치의 유니코드와 코드 변환)

  • Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.262-265
    • /
    • 2009
  • 21세기 세종계획은 국어정보화를 위한 범국가적 사업으로서 국어 기초 자원을 구축하는데 매우 큰 기여를 하였으며, 그 주요 결과물로 배포된 세종 말뭉치는 많은 연구자들에게 꼭 필요한 가치있는 결과물이다. 이처럼 소중한 국어 자원을 실제 연구자들이 활용하고자 할 때 불편함을 느끼는 경우가 있는데 그 이유는 균형 말뭉치의 구축이라는 말뭉치의 특성 및 원문 자료의 내용을 최대한 보존하기 위한 노력의 일환으로 사용자 정의 영역에 정의된 문자들이 다수 포함되어 있기 때문이다. 본 논문에서는 자연언어 처리, 정보검색 분야 연구자들이 세종계획 최종 결과물 중에서 원시 말뭉치를 활용하는데 있어서 말뭉치에 사용된 문자코드의 유형을 중심으로 코드 변환 문제점과 그 해결 방안을 모색하고자 한다.

  • PDF

Verbal Collocation Extraction from Sejong Tagged Corpus (세종 말뭉치로부터 용언연어 추출)

  • Lee, Jeong-Tae;Cheon, Min-Ah;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.121-123
    • /
    • 2015
  • 연어는 둘 이상의 단어로 구성된 표현으로 연어에 속하는 개개의 단어의 의미로써 연어의 의미를 유추할 수 없다. 따라서 연어의 의미를 분석하거나 번역할 경우 개개의 단어보다는 연어 그 자체를 하나의 분석 단위로 간주하는 것이 훨씬 더 효과적이다. 이를 위해 본 논문에서는 통계기법을 활용하여 세종 말뭉치로 부터 용언연어의 추출 방법을 제시하고 그 성능을 평가한다. 연어 패턴과 통계 정보를 이용해서 연어를 추출한다. 평가를 위해서 연어 사전과 전문가의 주관적 평가를 동시에 수행했다.

  • PDF

A Study on the Analysis of Korean Native Speakers's Utterance Fluency (한국어 모어 화자의 발화 유창성 분석 연구)

  • Lee, Jin
    • Korean Linguistics
    • /
    • v.81
    • /
    • pp.245-265
    • /
    • 2018
  • The purpose of this study is to prepare the basis for a more objective evaluation of oral fluency by analyzing Korean native speaker's utterance. Traditionally, fluency evaluation tended to rely on the evaluators' experience and subjective idea. Therefore, there has been a need of setting the evaluation standard in numeric form that is easily measurable. In this study, I will analyze Korean native speaker's utterance in focus of pause. Total number of 875 pauses were extracted from the 21st Century Sejong Korean spoken corpus, and the elements before and after the pauses were annotated. From the analysis results, the pauses were divided between fluent pauses and influent pauses. If the length of fluent pauses do not exceed reasonable length of pause for native Korean speakers, there was no point reduction. On the other hand, if the influent pauses are made more frequently than the native Korean speakers, then it is subject to point reduction.

A Korean Homonym Disambiguation System Based on Statistical, Model Using weights

  • Kim, Jun-Su;Lee, Wang-Woo;Kim, Chang-Hwan;Ock, Cheol-young
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2002.02a
    • /
    • pp.166-176
    • /
    • 2002
  • A homonym could be disambiguated by another words in the context as nouns, predicates used with the homonym. This paper using semantic information (co-occurrence data) obtained from definitions of part of speech (POS) tagged UMRD-S$^1$), In this research, we have analyzed the result of an experiment on a homonym disambiguation system based on statistical model, to which Bayes'theorem is applied, and suggested a model established of the weight of sense rate and the weight of distance to the adjacent words to improve the accuracy. The result of applying the homonym disambiguation system using semantic information to disambiguating homonyms appearing on the dictionary definition sentences showed average accuracy of 98.32% with regard to the most frequent 200 homonyms. We selected 49 (31 substantives and 18 predicates) out of the 200 homonyms that were used in the experiment, and performed an experiment on 50,703 sentences extracted from Sejong Project tagged corpus (i.e. a corpus of morphologically analyzed words) of 3.5 million words that includes one of the 49 homonyms. The result of experimenting by assigning the weight of sense rate(prior probability) and the weight of distance concerning the 5 words at the front/behind the homonym to be disambiguated showed better accuracy than disambiguation systems based on existing statistical models by 2.93%,

  • PDF

Extracting Korean-English Parallel Sentences from Wikipedia (위키피디아로부터 한국어-영어 병렬 문장 추출)

  • Kim, Sung-Hyun;Yang, Seon;Ko, Youngjoong
    • Journal of KIISE:Software and Applications
    • /
    • v.41 no.8
    • /
    • pp.580-585
    • /
    • 2014
  • This paper conducts a variety of experiments for "the extraction of Korean parallel sentences using Wikipedia data". We refer to various methods that were previously proposed for other languages. We use two approaches. The first one is to use translation probabilities that are extracted from the existing resources such as Sejong parallel corpus, and the second one is to use dictionaries such as Wiki dictionary consisting of Wikipedia titles and MRDs (machine readable dictionaries). Experimental results show that we obtained a significant improvement in system using Wikipedia data in comparison to one using only the existing resources. We finally achieve an outstanding performance, an F1-score of 57.6%. We additionally conduct experiments using a topic model. Although this experiment shows a relatively lower performance, an F1-score of 51.6%, it is expected to be worthy of further studies.

Rule Construction for Determination of Thematic Roles by Using Large Corpora and Computational Dictionaries (대규모 말뭉치와 전산 언어 사전을 이용한 의미역 결정 규칙의 구축)

  • Kang, Sin-Jae;Park, Jung-Hye
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.219-228
    • /
    • 2003
  • This paper presents an efficient construction method of determination rules of thematic roles from syntactic relations in Korean language processing. This process is one of the main core of semantic analysis and an important issue to be solved in natural language processing. It is problematic to describe rules for determining thematic roles by only using general linguistic knowledge and experience, since the final result may be different according to the subjective views of researchers, and it is impossible to construct rules to cover all cases. However, our method is objective and efficient by considering large corpora, which contain practical osages of Korean language, and case frames in the Sejong Electronic Lexicon of Korean, which is being developed by dozens of Korean linguistic researchers. To determine thematic roles more correctly, our system uses syntactic relations, semantic classes, morpheme information, position of double subject. Especially by using semantic classes, we can increase the applicability of the rules.

Annotation Tool for Construction Korean PropBank and Sejong Semantic Tagged Corpus (한국어 PropBank 및 세종 의미 표지 부착 말뭉치 구축을 위한 도구)

  • Han, Dae-Yong;Choi, Han-Gil;Lee, Jung-Kuk;Kim, Jong-Dae;Park, Chan-Young;Song, Hye-Jung;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.35-39
    • /
    • 2012
  • 의미역 결정에 있어 의미 표지 부착 말뭉치는 필수적이지만 한국어 의미 표지 부착 말뭉치는 영어나 중국어와 같은 언어에 비하여 구축이 미비한 상황이다. 본 논문에서는 한국어 의미 분석을 위한 한국어 Proposition Bank(이하 PropBank)와 세종 의미 표지 부착 말뭉치의 구축을 위한 소프트웨어 도구를 개발하였다. 본 논문에서 구현한 도구는 문장 성분의 의존관계를 이용하여 주어진 술어에 대한 논항을 찾아주고, PropBank 프레임 파일과 세종 용언 격틀 사전을 활용하여 사용자가 능률적으로 한국어 PropBank와 세종 의미 표지 부착 말뭉치를 구축할 수 있도록 하였다.

  • PDF

Efficient Part-of-Speech Set for Knowledge-based Word Sense Disambiguation of Korean Nouns (한국어 명사의 지식기반 의미중의성 해소를 위한 효과적인 품사집합)

  • Kwak, Chul-Heon;Seo, Young-Hoon;Lee, Chung-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.4
    • /
    • pp.418-425
    • /
    • 2016
  • This paper presents the part-of-speech set which is highly efficient at knowledge-based word sense disambiguation for Korean nouns. 174,000 sentences extracted for test set from Sejong semantic tagged corpus whose sense is based on Standard korean dictionary. We disambiguate selected nouns in test set using glosses and examples in Standard Korean dictionary. 15 part-of-speeches which give the best performance for all test set and 17 part-of-speeches which give the best performance for accuracy average of selected nouns are selected. We obtain 12% more performance by those part-of-speech sets than by full 45 part-of-speech set.

Developing an Error Correction Tool for Sejong POS Tagged Corpus (세종 형태분석 말뭉치의 오류 수정 도구 개발)

  • Choi, Myung-Gil;Nam, Yoo-Rim;Seo, Hyung-Won;Jeon, Kil-Ho;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.114-116
    • /
    • 2011
  • 한국어 정보처리에서 널리 사용되는 세종 형태분석 말뭉치는 품사정보와 문장정보 등 다양한 한국어 정보를 포함하고 있다. 이 말뭉치는 방대한 양의 정보들로 구축되었지만 많은 오류 또한 포함되어 있다. 예를 들면 철자 오류, 띄어쓰기 오류, 그리고 품사부착 오류 등이 있다. 하지만 세종말뭉치와 같이 대용량 말뭉치의 오류를 수정하는 것은 많은 인력과 시간이 필요하며 일관성 있게 오류를 수정하는 것은 쉽지 않다. 따라서 본 논문에서는 세종 형태분석 말뭉치에 포함된 오류를 빠르고 일관성 있게 수정하기 위한 오류 수정 도구를 구현하였다. 본 논문에서 수정 대상이 되는 오류는 어절과 형태소 분석 결과의 불일치에 관한 오류만 대상으로 한다. 이를 위해 세종 형태분석 말뭉치를 데이터베이스로 재구축하였으며, 본래의 어절과 품사가 부착된 형태소의 자모를 각각 분리하여 두 자모의 차이점을 분석하여 오류 후보를 선정한다. 오류 후보에서 동일한 오류 패턴을 갖는 모든 오류 후보에 대하여 동일한 방법으로 일관성 있고 빠르게 수정할 수 있다.

  • PDF