• Title/Summary/Keyword: seismograph

Search Result 31, Processing Time 0.028 seconds

Case Study of Rock Mass Classifications in Slopes (절취사면의 암질평가사례)

  • Shin, Hee-Soon;Han, Kong-Chang;Sunwoo, Choon;Song, Won-Kyong;Synn, Joong-Ho;Park, Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.109-116
    • /
    • 2000
  • Rippability refers to the ease of excavation by construction equipment. Since it is related to rock quality in terms of hardness and fracture density, which may be measured by seismic refraction surveys, correlations have been made between rippability and seismic P wave velocities. The 1-channel signal enhancement seismograph(Bison, Model 1570C) was used to measure travel time of the seismic wave through the ground, from the source to the receiver. The seismic velocity measurement was conducted with 153 lines at 5 rock slopes of Chungbuk Youngdong area. Schmidt rebound hardness test were conducted with 161 points on rock masses and the point load test also on 284 rock samples. The uniaxial compressive strength and seismic wave velocity of 60 rock specimens were measured in laboratory. These data were used to evaluate the rock quality of 5 rock slopes.

  • PDF

Best Use of the Measured Earthquake Data (지진관측자료의 효과적인 활용에 관한 고찰)

  • 연관희;박동희;김성주;최원학;장천중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.36-43
    • /
    • 2001
  • In Korea, we are absolutely short of earthquake data in good quality from moderate and large earthquakes, which are needed fur the study of strong ground motion characteristics. This means that the best use of the available data is needed far the time being. In this respect, several methods are suggested in this paper, which can be applied in the process of data selection and analysis. First, it is shown that the calibration status of seismic stations can be easily checked by comparing the spectra from accelerometer and velocity sensor both of which are located at the same location. Secondly, it is recommended that S/N ratio in the frequency domain should be checked before discarding the data by only look of the data in time domain. Thirdly, the saturated earthquake data caused by ground motion level exceeding the detection limit of a seismograph are considered to see if such data can be used for spectrum analysis by performing numerical simulation. The result reveals that the saturated data can still be used within the dominant frequency range according to the levels of saturation. Finally, a technique to minimize the window effect that distorts the low frequency spectrum is suggested. This technique involves detrending in displacement domain once the displacement data are obtained by integration of low frequency components of the original data in time domain. Especially, the low frequency component can be separated by using discrete wavelet transform among many alternatives. All of these methods mentioned above may increase the available earthquake data and frequency range.

  • PDF

A Study on Attenuation of Ground Vibration Using Hammer Generated Seismic Wave (탄성파탐사에 의한 토양층 지반진동의 감쇠연구)

  • 서만호;손호웅
    • The Journal of Engineering Geology
    • /
    • v.6 no.2
    • /
    • pp.95-102
    • /
    • 1996
  • A study on the attenuation of ground vibration was carried out on the soil layer using seismic exploration method. A 12-channel engineering seismograph was used to acquire real digital amplitude data in field work. Frequency analysis of seismic data shows maximum spectrum amplitude around 40Hz. Relative amplitude decreases exponentially as the distance increases and the attenuation factors are n = 0.25 and a = 0.13-0.20. Internal attenuation indexes(a) are 0.13 and 0.20 in the wet soil zone and the vegatated soil zone, respectively. It means that ground vibration attenuates faster in vegatated soil zone than in wet soil zone. Average internal attenuation coefficient(h) was determined to be 0.094 from seismic velocity and frequency analysis.

  • PDF

Roland Giguère and Poetic Landscape - La main au feu (롤랑 지게르와 시의 풍경 - 『불 위의 손』을 중심으로)

  • Kim, Yong Hyun
    • Cross-Cultural Studies
    • /
    • v.39
    • /
    • pp.153-176
    • /
    • 2015
  • Poet, painter and publisher, Roland $Gigu{\grave{e}}re$ is one of Quebec's outstanding figures, inspired by both Surrealism and Quebec nationalism. He participated in contemporary artistic movement 'Phases' and influenced collective self-awareness and political ferment, 'Quiet Revolution'. In La Main au feu(1973), his poetry represent a landscape dominated by darkness in contrast with red color of fire from the volcanic crater. The world is immersed in darkness of despair which allude to the Great Darkness of Quebec society. Acts of violence assume many different forms: crows, black rain, dark flow, frenzy of knife blows. Both things and humans are in the state of absence or lack. Life falls into opacity of death. In the background of dark landscape, we discover Miror, a singular character. Similar to chain of mountains and to bare forest, he is a creature that shape the tragic inner world of poet. He is as like as seismograph that record the tremble of being. Finally, in order to fight the darkness of environment, the poet attempt to use the power of fire of volcanoes. The flow of magma become paintings of his dream and the flame of eruption, poetry of cry toward the sky. 'La main au feu' means the will to resist injustice and repression in the world. The tragic reality is replaced by a dream that become second reality out of reach of the force of hostile external circumstances.

Comparative review and interpretation of the conventional and new methods in blast vibration analyses

  • Uyar, G. Gulsev;Aksoy, C.O.
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.545-554
    • /
    • 2019
  • The customary approach used in the blast vibration analysis is to derive empirical relations between the peak particle velocities of blast-induced waves and the scaled distance, and to develop patterns limiting the amounts of explosives. During the periods when excavations involving blasting were performed at sites far from residential areas and infrastructure works, this method based on empirical correlations could be effective in reducing vibrations. However, blasting procedures applied by the fast-moving mining and construction industries today can be very close to, in particular cities, residential areas, pipelines, geothermal sites, etc., and this reveals the need to minimize blast vibrations not only by limiting the use of explosives, but also employing new scientific and technological methods. The conventional methodology in minimizing blast vibrations involves the steps of i) measuring by seismograph peak particle velocity induced by blasting, ii) defining ground transmission constants between the blasting area and the target station, iii) finding out the empirical relation involving the propagation of seismic waves, and iv) employing this relation to identify highest amount of explosive that may safely be fired at a time for blasting. This paper addresses practical difficulties during the implementation of this conventional method, particularly the defects and errors in data evaluation and analysis; illustrates the disadvantages of the method; emphasizes essential considerations in case the method is implemented; and finally discusses methods that would fit better to the conditions and demands of the present time compared to the conventional method that intrinsically hosts the abovementioned disadvantages.

KIGAM Quake: An open platform for seismological data and earthquake research information

  • Moon-Gyo Lee;Youngchai Kim;Hyung-Ik Cho;Han-Saem Kim;Chang-Guk Sun;Yun-Jeong Seong;Il-Young Che
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.279-291
    • /
    • 2024
  • The "Korea Institute of Geoscience and Mineral (KIGAM) Quake" is a web-based open platform developed for publicly serving seismological data from 61 stations operated by KIGAM in Korea. The service provides meta-information related to observatory sites, sensors, and recorders necessary for utilizing the seismological data, as well as mainly observed continuous and strong-motion waveforms. The data is available through both the web and International Federation of Digital Seismograph Networks (FDSN) web services (open API), a unified data-providing interface in seismology. The platform aims to strengthen its open nature by offering a signal processing function for strong ground motions that can be controlled by user requests. The processed results can be downloaded in ASCII format, designed to meet the increased demands and accessibility in the earthquake engineering field. The platform also offers earthquake research information produced by KIGAM, such as recent major earthquake source information and academic annual report of earthquakes. Additionally, a site flat file was constructed for the geotechnical characteristics of 61 KIGAM station (KGNET) sites based on direct investigations and estimations.

Low frequency Long Duration Blast Vibrations and Their Effect on Residential Structures (지속시간이 긴 저주파 발파진동과 주거 구조물에 미치는 영향)

  • Roy M. P.;Sirveiya A. K.;Singh P. K.
    • Explosives and Blasting
    • /
    • v.23 no.2
    • /
    • pp.57-66
    • /
    • 2005
  • A major concern with blasting at surface mines is generation of ground vibration, air blast, flyrock, dust & fume and their impact on nearby structures and environment. A study was conducted at a coal mine in India which produces 10 million tonne of coal and 27 million cubic meter of overburden per annum. Draglines and shovels with dumpers carry out the removal of overburden. Detonation of 100 tonnes of explosives in a blasting round is a common practice of the mine. These large sized blasts often led to complaints from the nearby inhabitants regarding ground vibrations and their affects on their houses. Eighteen dragline blasts were conducted and their impacts on nearby structures were investigated. Extended seismic arrays were used to identify the vibration characteristics within a few tens meters of the blasts and also as modified by the media at distances over 5 km. 10 to 12 seismographs were deployed in an array to gather the time histories of vibrations. A signature blast was conducted to know the fundamental frequency of the particular transmitting media between the blast face and the structures. The faster decay of high frequency components was observed. It was also observed that at distances of 5km, the persistence of vibrations in the structures was substantially increased by more 10 seconds. The proximity of the frequency of the ground vibration to the structure's fundamental frequencies produced the resonance in the structures. On the basis of the fundamental frequency of the structures, the delay interval was optimized, which resulted into lower amplitude and reduced persistence of vibration in the structures.

THE POTENTIAL OF SATELLITE REMOTE SENSING ON REDUCTION OF TSUNAMI DISASTER

  • Siripong, Absornsuda
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.52-55
    • /
    • 2006
  • It's used to be said that tsunami is a rare event. The recurrence time of tsunami in Sumatra area is approximately 230 years as CalTech Research Group‘s study from paleocoral. However, the tsunami occurred in Indian Ocean on 26 December 2004, 28 March 2005 and 17 July 2006, because the earthquakes still release the energy. To cope with the tsunami disaster, we have to put the much effort on better disaster preparedness. The Tsunami Reduction Of Impacts through three Key Actions (TROIKA) was suggested by Eddie N. Bernard, the director of NOAA/PMEL (Pacific Marine Environmental Laboratory). They are Hazard Assessment, Mitigation and Warning Guidance. The satellite remote sensing has potential on these actions. The medium and high resolution satellite data were used to assess the degree of damage at the six-damaged provinces on the Andaman seacoast of Thailand. Fast and reliable interpretation of the damage by remote sensing method can be used for inundation mapping, rehabilitation and housing plans for the victims. For tsunami mitigation, the satellite data can be used with GIS to construct the evacuation map (evacuation route and refuge site) and coastal zone management. It is also helpful for educational program for local residents and school systems. Tsunami is a kind of ocean wave, therefore any satellite sensors such as SAR, Altimeter, MODIS, Landsat, SPOT, IKONOS can detect the tsunami wave in 2004. The satellite images have shown the characteristics of tsunami wave approaching the coast. For warning, satellite data has potential for early warning to detect the tsunami wave in deep ocean, if there are enough satellite constellation to monitor and detect the first tsunami wave like the pressure gauge, seismograph and tide gauge with the DART buoy can do. Moreover, the new methods should be developed to analyse the satellite data more faster for early warning procedure.

  • PDF

Monitoring Techniques for Active Volcanoes (활화산의 감시 기법에 대한 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun;Chang, Cheol-Woo
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.119-138
    • /
    • 2014
  • There are various ways to monitor active volcanoes, such as the method of observing the activity of a volcano with the naked eye, the method of referring to the past eruptive history based on the historic records and the method of monitoring volcanoes by using observation equipment. The most basic method from the observation equipment-using methods to monitor volcanoes is seismic monitoring. In addition to this, the ways to monitor volcanoes are as follows: resonance observation which may be effective to remove artificial noises from the seismic activities that are recorded in the seismograph, ground deformation by using precision leveling, electronic distance measurement, tiltmeter, GPS, and InSAR observation method, volcanic gas monitoring, hydrologic and meteorological monitoring, and other geophysical monitoring methods. These monitoring methods can make volcanic activities effectively monitored, determine the behavior of magmas in magma chambers and help predict the future volcanic eruptions more accurately and early warning, thus, minimize and mitigate the damage of volcanic hazards.

Study on Earthquakes of Korea based on the Local Data of 1926~1943 (1926~1943년(年)의 국지자료(局地資料)에 의한 한국 지진(地震)의 연구(硏究))

  • Kim, Sang Jo
    • Economic and Environmental Geology
    • /
    • v.13 no.1
    • /
    • pp.1-19
    • /
    • 1980
  • The local earthquake data, observed by Wiechert seismograph in Korea during Feb. 1926-May 1943, was provided and investigated. Using S-P monogram of JMA, mainly Tsuboi's formula and additional intensity data, the earthquake parameters are obtained as much as possible within a reasonable discrepancy. The seismic characteristics as to the epicenter distribution was discussed under the viewpoint of its relation to the adjacent geologic structure. Some statistical results are analyzed comparing with Kyushu region which provide a reasonable interpretation on the seismicity of Korea. By superposing the available information of the individual events, the general trend of stress field was found to be east-west compression, which mostly agree with that of the southwestern Japan.

  • PDF